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.\QBSTRACT - . | '%

. *\any computational probiems are inherently geometrical in nature. For sxample,
cluster apalysis involves construction of convex huils of sets of points, LS! artwork i
analysis requires a test for intersection of sets of line segments, computer graphics
involves hidden line elimination, and even linear programming can be expressed in
terms of intersection of haif-spaces. As larger geometric problems are solved on
the computer, the need grows for faster algorithms to solve them. The topic of this
thesis is the use of geometric transforms as algorithmic tools for canstructing fast
geometric algorithms. We describe several géometric problems whose solutions
ilustrate the use of geometric transforms. These include fast aigorithms for
intersecting half-spaces, constructing Voronol diagrams, and computing the
Euclidean diameter of a set of points. For each of the major transforms we include a

set of heuristics to enable the reader to use geometric transforms to solve his own

problems.
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1. Introduction

Many computational problems are inherently geometrical in nature. For example,
cluster analysis involves construction of convex hulls of points, LSI artwork analysis
requires a ‘test for intersection of sets of line segments, computer graphics involves
hidden line elimination, and even linear programming can be expressed in ‘terms of
intersection of half-spaces. As larger geometric problems are solved on the
computer, grows for faster algorithms to solve them. To obtain fast geometric
algorithms a set of tools and techniques has been developed that takes advantage
of the structure provided by the geometry. This discipline is known as
Computational Geometry. In the following sections we first survey the previous work

in computational geometry and then outline the contributions of this thesis.

1.1. History of Computational Geomotry

Geometry has been studied for thousands of years but only recently has it been
recast in computational form. Shamos [91] describes the history of geometry from
the perspective of a computer scientist. Here we will consider only the history of
computational geometry. There are several problem areas to which much research
has been devoted -- construction of convex hulls, intersection problems,
closest-point problems, and geometric. searching problems. In this section we
summarize the major results in each of these areas and also a number of topics that

do not fit into these categories.

v

1.1.1. Convex Hulls

The convex hull of a set of points is a fundamental geometrical structure that
arises in a multitude of different problems in the literature and this thesis.
Mathematics texts define the convex hull of & set of points S as the smallest
convex set that contains all of the points of S. This definition is fine for proving

theorems but it does not help us design a fast algorithm.

In 1970 Chand and Kapur [25] produced a convex hull algorithm for N points In
K-space. They applied a procedure called "giftwrapping” to obtain a good (but not
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Figure 1=1: Convex hull of a planar set of points.

optimal) algorithm. Graham [48] presented an O(N log N) time planar algorithm in
1972. This is optimal, in the worst-case sense, because an algorithm that
constructs a convex hull can be used to sort [81]. (If we require only the vertices
of the convex hull, then we can no longer use a convex hull algorithm to sort.
Nevertheless, Yéo [103] has proven that Q(N log N) time is still required in the worst
case when only quadratic functions of the input are allowed.) Jarvis
[54] subsequently applied giftwrapping to the planar problem to obtain an O(VN)
time aigorithm where V is the number of vertices on the hull. If V is less than
O(log N) then Jarvis' algorithm is faster than Graham's. (Preparata [81] later refined
Graham's result by constructing an O(N log N) time real-time planar convex hull
algorithm. Rather ’than operating on all N points collectively, this algorithm updates
the hull in O(log N) time after each point is read.) Preparata and Hong [83] then
solved the three-dimensional convex hull problem in O(Nlog N) time. In four
dimensions, however, there is an Q(N2) lower bound because the convex hull can
have §(N2) edges ([49], p.193).

The lower bounds above apply anly to the worst-case. If the expected number of
points on the convex hull is sublinear, then faster expected-time algorithms are
possible. Floyd [40] and Eddy [39] independently discovered a planar convex hull

algorithm with O(N) expected-time when the N points are drawn from a uniform
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distribution over a convex region. Bentle); and Shamos [18] fmproved that result to
include any distribution for which the expecte;i number of points on the hull is O(NP)
for some p < 1. Furthermore, their resuit extends to O(N) expected-time in
three-space while maintaining an O(N log N) worst-case time. For K dimensions we
may still construct the convex hull in O(N) expected-time if the K coordinates are
drawn from independent distributions. In this case the expected values for the
number of maxima and the square of the number of maxima are only O(IogK'1N) [10]
and O(IOQZ(K-1)N) [30], respectively. Even though the worst-case number of
edges, faces, etc. of a K-dimensional convex hull of N vertices grow exponentialily

with K, the expected size of the convéx hult is still only a power of log N.

1.1 2 Interscction Problems

Intersection problems have also received a great deal of attention in recent
years. They occur in a variety of areas including computer graphics, architectural
data bases, printed circuit design, and even linear programming [94, 12, 2, 85).
Shamos and Hoey [80, 91] constructed several fundamental intersection algorithms
including a linear time intersection of two convex polygons, which is applied
recursively in their O(N log N) time algorithm for intersecting N haif-planes. Hoey's
O(N log N) time algorithm [94] to determine if any two of N line segments intersect
has been extended by Bentley and Ottmann [12] to report all K intersecting pairs in
O(N log N + K log N) time. (Brown [24] has reduced the storage requirement of
Benﬂey and Ottmann's aigorithm from O(N + K) to O(N).) If ail segments are either
horizontal or vertical, then the number of intersections K can be counted in
O(N fog N) time and reported in O(N fog N + K) time. (See [4, 18, 88] for rectangle
intersection problems and algorithms.) Finally, Zolnowsky [108] and Preparata and
Muller [84] have applied geometric transforms to produce three aligorithms for

intersecting N three-dimensional half-spaces in O(N log N) time.
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1.1.3. Closest Po-int Problems

Closest point problems arise in cluster analysis, pattern recognition, and, in
particular, construction of minimum spanning trees [93,3]. Dobkin and Lipton
[34,35] used an interesting duality transform to prove an Q(N log N) time lower
bound for the element-uniqueness probiem1 under a mode! of computation that
allows (<,=,>) comparisons of linear functions of the input.2 This proves an }{N log
N) time lower bound for the problem Qf finding the two closest of N points. Their
model of computatioﬁ. however, allows \Only comparisons between linear functions of
the input. With a stronger model of computation algorithms faster than O(N log N)
time are possible.. Fortune and Hopcroft [41] showed that if the floor function is
allowed, the two closest points can bhe foun_\d in O(N log log N) time in the worst
case. Previously, Rabin [86] and Yuval [104] had given O(N) expected-time

algorihms for the K-dimensional closest pair problem,

Meanwhile, Bentley (and others) worked on multi-dimensional nearest neighbor
probiems [9, 11, 14, 17] and he invented a data structure called a K-D tree to
solve them efficiently. Bentley's thesis [3] employed a strategy called
multi-dimensional divide-and-conquer with which he obtained the first
sub-quadratic algorithms for several multi-dimensional closest point problems. His
thesis is also a good source for learning about algorithm design -- rather than simply
presenting the finished product he displays the algorithm design process and at the

conclusion presents a list of heuristics to use in designing algorithms.

Shamos and Hoey [89, 91, 93] created an O(N log N) time divide-and-conquer

algorithm for constructing a Voronoi diagram of N planar points. A Voronoi diagram

1The element uniquencss problem is to determine whether ail N elements of an unordered multiset are unique.

2t the ailowed (¢,=,>) comparisuns are restricted to be between the N elements themselves == no linear
functions of the input == then an [3(N log N) time lower bound is casy to prove. This is because no ordering of the
N eloments other than a tolal ordering can guarantee that no two clements are equal. Construction of a total
ordering, however, requires a sort, which costs (N log i) time.
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(to be described il; detail in Section 4.1) contains all of the necessary proximity
information to solve efficiently a number of ciosest-point problems including
construction of a Cuclidean minimal spanning tree, a proper straight-line triangulation
of the N points, and the nearest neighbor problem. Bentley, Weide, and Yao
(18] have extended the techniques of Weide's thesis {99] to obtain a linear
expected-time algorithm for constructing a planar Voronoi dlagram. The only
conditions are that the probability density of the underlying distribution be bounded

both above by a constant and (below) away from zero over some finite region.

Bentley and Fricdman [8] describe a heuristic solution for a minimum spanning
tree algorithm in multi-dimensional Euclidean space and Yao [102] has constructed
provably subquadratic worst-case MST (and related) algorithms for the L4, Lo, and
l:oo metrics. (For K 2 3 dimensions his algorithms take O(NZ'G(K)(Iog N 1-a(K)) time
where (K) = 2-(K+1) For the special case of the Euclidean metric in three
dimensions this is improved to O((N log N)1-8) time.) In general, though, construction
of a mininium spauning tree is a graph problem. Kruskal [63] and Prim [85] give the
classical O(EV) time algorithms (improved to O(V2) time [32]). Both Yao [101] and
Cheriton and Tarjan [26] present O(E log log V) time algorithms for general graphs of
€ edges and V vertices, and Cheriton and Tarjan [26] also present an O(V) time
algorithm for planar graphs.

1.1.4. Goomotric Searching Problems

. As we saw above, many closest-point problems have associated searching
problems; in this section we summarize a separate class of searching problems that

are not related to any particular closest-point problem.

Shamos [89] gives an algorithm that locates a point in a straight-}ine planar graph
of N vertices in O(log N) time and Dobkin and Lipton [33] and Oewdney
[31] extended this technique to K dimensions. Unfortunately, the storage and
. preprocessing time required by these algorithms are prohibitive -- O(Nz) in the
planar case and O(NZK) in the K-dimensional case [102]). Lee and Preparata

[66] improved the storage and preprocessing time at the expense of increased
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searching time, giving an algorithm with O(logZN) query time, O(N log N)
preprocessing time, and O(N) storage. (Shamos and Hoey [89, 93] had achieved
these bounds for searching Voronoi diagrams.) Another alternative is Preparata’s
algorithm with only O(log N) query time but O(N log N) preprocessing time and storage
[80]. In 1877 Liplon and Tarjan achieved an O(log N) query time with only O(N log N)
preprocessing time and O(N) storage [69, 70]. The point location problem is

generalized to the location of a set of points in [68, 82].

Kung, Luccio, and Preparata {64] worked on the probiem of finding the maxima of
a set of N vectors in K-space. (A vector is maximal if none of the other N - 1
vectors are greater in all K coordinates.) Using divide-and-conquer, they
constructed an algorithm that finds the maxima in O(N log N) time in two dimensions
and O(N (log N)X-2) time in K2 3 dimensions. They also proved an Q(N log N) lower
bound for the problem. Maxima are important because of their relationship to
"convex hulis and ECDF's (to be described). Bentley, Kung, Schkolnick, and

Thompson [10] extended those results to obtain a linear expected time algorithm.

Bentley and Shamos have created a fast algorithm for constructing and searching

an empirical cumulative distribution function (ECDF) [15]. An ECDF is an extension

. of the familiar one-dimensional cumuiative distribution function. The value of the

function at a point in one dimension is the number of points with smaller X
coordinate. In K dimensions it is the number of points that are smaller in all K
coordinates. Bentley and Shamos applied multi-dimensional divide-and-.conquer to
accomplish ECDF searching in 0(logKN) time with O(N logK'1N) storage and
O(N IogK'1N) preprocessing time. Bentley has further elaborated this in his papers

on range searching [6, 9, 11].

Bentley and Saxe have characterized properties of a large class of problems
called decomposable searching problems that include many geometric searching
problems, including ECDF searching [5]. A searching problem is decomposable if the
search for the relation of an object x to a set S = AU B satisfies

query(x, A VU B) = query(x, A) * query(x, B)
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]

for any sets A and B such that § = A U B and some binary function "s* that is
computable in O(1) time. Decomposatie problems have several interesting
properties, one of which is that any static searching algorithm for a decomposable
problem can be mechanically transformed to a dyrnamic searching algorithm with a
loss of at mast O(log N) in preprocessing time and query time. They have extended
this result to a.class of alternate preprocessing time, query time, and storage
tradeoffs [13, 88].

1.1.5. Miscellancous Geometric Problems

There are several topics that do not properly fit into any of the above categories.
For example, we should mention that Garey, Graham, and Johnson and Papadimitriou
and Steiglitz were the first to demonstrate thatv several geometric problems are
NP-Complete [45, 74]. Also, Shamos has applied many of the techniques of
computational geometry to statistics and created a new fieid of computational
statistics [90]. ECDF seari:hing (described above) grew from this work, and
Weide's thesis [98] gives many important applications of statistical techniques to
computer science problems. This includes a linear expected-time sorting algorithm

for any set with an underlying distribution having a bounded probability density.

1.2. Thesis OQutline

The topic of this thesis is the use of geometric transforms as tools for
constructing fast geometric algorithms. The object of using a transform is, of
course, to give the problem a more useful representation than it had in its original
form. There is, however, no explicit rule for determining which, if any, geometric
transform(s) can be applied profitably to a particular problem. instead, we have
generated hcuristics for application of the geametric transforms. 1t is intended that
these heuristics will help the reader use geometric transforms to solve his own
problems. In the following chapters we describg a collection of geometric problems
whose solutions illustrate the use of geometric transforms. The algorithms provide

not only examples of the applications of the transforms but also are useful resuits
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by .themselves.

The use of transforms is not new to computer science. For example, the concept
of NP-complete problems (languages) is based on polynomial time reducibility of one
problem to anotner [1), the FFT (Fast Fourier Transform) is used for fast
multiplication of polynomials [20], and many “filter" transforms are used in pattern
recognition. We aiso encounter transforms in the solution of difference equations
that arise in the analysis of algorithins (the z-transform or generating function) and
solution of differential equations that arise in analysis of several types of queueing
systems (Laplace transform) [61]. Yet another common example is obtaining a lower
bound on the complexity of a problem X by demonstrating that an algorithm that
solves X can solve a problem Y for which a lower bound is known. (Shamos' thesis
[91] gives several examples of this.) Finally, we should also mention Parker's
thesis [75], which explicitly addresses the application of transforms to the problems
of Huffman tree construction, solution of nonlinear recurrences, and construction of

permutation networks.

Chapter 2 establishes the context and direction of this thesis with a simple
example - the diameter of N planar points in the Ly and Ly, metrics. Before this
problem is discussed we first setlle several issues -- model of computation,
representation of the geometrical objects, measures of complexity, and, of course, a
definition of diameter in the Ly and L, metrics. We present an algorithm for
computing the L., diameter and use a geometric transform (rotation) to transform
the L4 diameter problem to an L, diameter problem. We follow the same schiema
followed throughout the thesis; Given a problem Y and an algorithm that solves a
(related) problem X, we apply a geometric transform f that transforms problem Y to a

problem of type X,

In Chapter 3 we describe the application of geometric transforms to intersection
and union_ problems. We solve two problems in detail (the intersection of

half-spaces and the union of disks) and give optimal algorithms for each. More

importantly, we present several transforms and techniques in this chapter that will
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be encountere;l many times again in succeeding chapters. The first transform
introduced is a point / flat duality that transforms problems that involve flats3 to
(simpler) problems that involve points. The second new transform (inversion)
converts problems that involve circles or spheres to problems of lines or planes.
Inversion is typically combined wilh an embedding of the problem in a higher
dimension to add another degree of freedom to the problem. We also introduce the
convex hull (a fundamental geometrical structure) in the first of its several
applications in this thesis. Finally, the techniques of Chapter 3 are tied together by
deriving the point / flat duality from a limiting case of inversion combined with a

convex hull and a linear transform.

In Chapter 4 we apply inversion (after embedding in a higher dimension) and
convex hulls to the construction of nearest point tesselations of space. The most
important such tesselation is the Voronoi diagram, which enables efficient solution of
a number of geometric problems including minimum spanning tree, closest points, and
Delauhay triangulation of a set of points. Shamos [89,93,91] applied
divide-and-conquer in the plane to obtain the first O(N log N) time planar Voronoi
diagram algorithm. This thesls gives a new O(N log N) time algorithm that extends

straighforwardly to higher diménsions.

Chapter 5 describes two surprising applications of algorithms that search
tesselations and the transforms used are the same in both cases -~ the point / flat
. duality followed by an orthographic projection. We transform linear programming in K
variables and N constraints {0 a probiem of locating a point in a K-1-dimensional
tesselation induced by N points. The problem of computing the Euclidean diametar of
N points in threce-space is transformed to the problem of finding all pairs of
overiapping regions in two outerplanar graphs of O(N) vertices, which can be solved
in O((N + K) log N) time and O(N) storage (where K is the number of pairs of
antipodal vertices of the convex hull of the N points).

3a flat, aizo hknown as a hyperplane, prime, or a (K=1) flat, is 3 K-t-cimensional linearly closed subspace of
K-spaco. Thus a line is a flat in the planc, a plane is a flat in three-space, etc.
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In Ch_apter 6 we cover several miscellaneous problems that do not fall in any of
the calegories of the previous chapters. We describe a use of the floor function to
obtain an O(N + 1/¢) time €-approximation algorithm for the Euclidean diameter of N
planar points and also demonstrate an application of gnomonic projection in an
algorithm of Yuval [105] for determining if N spherical points can be fit in a

hemispherical cap.

Chapter 7 summarizes the thesis and points out directions for further work.
Appendix | describes the problem of choosing a good orientation for flats (before
applying the point / flat duality). Appendix |l gives an approach toward an
(N log N) time lower bound for the Euclidean diameter of a set of N planar points,

and Appendix Ul summarizes the geometric transforms used, their important

properties, and their applications.
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‘2. An Example: Diameter in the Plane

This chapter gives some of the flavor of geometric transforms by presenting a
simple example -- the transformation of the problem of computing the Ly diameter of
a set of N planar points to the problem of computing the L, diameter of another set
of N planar points. But first we require some definitions and explanations along‘the

fqllowing lines:
1.a ptecise-pvoblem specification,
2. a model of computation,
3. an appropriate cost measures to measure the complexity, and

4, the representalion of the problem and the solution.

In the following sections we will address these issues and then construct algorithms

for the L4 and L, diameters of a set of planar points.

2.1. Problem Specification

Let S = ( p; = (x;,y;) i*1,..N } be a set of N planar paints. It D(pi,pj) equals the
distance (in some as-yet unspecified metric) between points p; and Pj then the

diameter of S is

max
DIAM(S) = 1y O(P;:p))-

The value of DIAM(S) depends, of course, on the metric chosen for D. The three

metrics of interest in most applications are
Ly metric: Dy(pyppj) = Ixj = xjl + ly; = vjl
L (Euclidean) metric: Da(pppj) = ((x; - xj)2 +(y; - yj)z 2

Lo metric: Doolpi j) = max( |x; = x;l. ly; = ¥}

‘Let the diameters in these three metrics be denoted DIAM1(S). DIAMz(S) and

DIAM(S), respectively. The unit circles for these metrics are pictured in Figure

k.
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Ll L2 Loo

Figure 2-1: Unit circles in the Ly, Lo, and L, metrics.
2-1.

The problem that we will solve is

Given an algorithm that compules DIAM.,(S) for any set S of N planar
points, construct an algorithm that computes DIAM(S),

The solution takes advantage of a natural isometry between the Ly and'L@o metrics

in the plane [27]. We will cover the L, (Euclidean) diameter in Section 5.2.

2.2. Modcl of Computation

What tools are we given to compute DIAM4(S) and DIAM,(S)? In other words,
what is the model of computation? There are two (conflicting) criteria to be used in
our choice: (1) how realistically the model reflects the capabilities of real
machines, and-(2) mathematical tractibility of the model. The real RAM [81] (similar
to the integer RAM [1]) is a reasonable compromise for much of the work in
geometric algorithms. Its capabilities are basically those of any reasonable
algebraic programming language -- the four arithmetic operations (+,=-,%,/),
comparisons between numbers (£,£), and indirect addressing (for convenient access
to arrays and other structures). ‘A word in a real RAM is assumed to be able to store
a real number exactly; although this assumption is not entirely realistic, it is close
enough for most practical applicat'ions. We often augment the arithmetic operations
to include arbilrary analylic functions (lrigonometric functions, exponentials, and
logarithms, etc.). The floor function, on the other hand, will not be included without

special comment because it is not analytic.
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The floor function does seem to add power to our model of computation that is not
available from analytic functions alone. Gonzalez [47] used it to find the largest
gap between N (unsorted) real numbers in O(N) time and Fortune and Hopcroft
[41] solved the closest-point problcm in O(N log log N) worst-case time. Several
fast expected-tine algorithms use the floor function, including the linear
expected-time closest point algorithms of Rabin [86] and Yuval [104]. Weide
[99] uses it to improve-his linear expected-time sorting algorithm (for all underlying
distributions with bounded density) and Bentley, Weide, and Yao [18] extend
Weide’'s result to linear expected?time Voronoi diagrams (for certain probability

distributions).

2.3. Cost Mecasures and Complexity

Now that the model of cdmputation has been defined we can talk about the cost
or complexily of an algorithm or probiem. On a real RAM each arithmetic operation,
comparison, or (indirect) memory reference has an associated cost. The cost may or
may not depend on the arguments for the operation, the numbers compared, or the
contents of the memory referenced. The logarithmic cost criterion for an integer
RAM [1] does assign a greater cost to manipulations (additions, comparisons, etc.)
of large integers than for small integers. But for a real RAM it makes more sense to
use the uniform cost criterion -- a&ll operations, comparisons, and memory
references have a unit cost, independent of the numbers being manipulated. We will

use the uniform cost criterion throughout the thesis.

The cost of executing an algorithm is known as the complexity of that algorithm.
The complexily of a problem is the minimum complexity of any possible algorithm
that solves it (under the given model of computation). (The complexity of an

algorithm is always an upper hound for the complexity of the problem it solves.) The

. complexity of an algorithm or a problem is usually expressed as a function of the

size of the problem. The size may be the number of words of input, output, or
whatever is most appropriate for the particular problem. It is often, however,

inconvenient and unnecessary to obtain an exact count of all the operations,
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comparison, and memory references 'that an algorithm makes for any particular
problem size N. Knuth [62] has popularized a convenient notation for talking about
asymptotic bounds on the complexity of an algorithm or problem:

O(f(N)) = set of all functions g¢g{N) such that for some positive
constants M and C, |g(N)] € C f(N), for all N > M.

Q(f(N)) = set of all functions g(N) such that for some positive
constants M and C, g(N) 2 C f(N), for all N > M,

O(f(N)) = set of all functions g(N) such that for some constants M, Cy,

and Cp, Cq g(N) < f(N) £ C5 g(N), for all N > M.
An algorithm that solves a problem of size N in {(N) ti{ne th.us proves an upper bound
of O(f(N)) for the time complexily of the problem. If a lower bound of Q(f(N)) time is
also known for that problem, then that problem has time complexity @(f(N)). The
complexity of an algorithm may alternately measure the space or storage used. The
notation is the same as for time complexity, and we thus may speak of an algorithm

having time compiexity O(T(N}) and space complexity O(S(N)).

2.4. Representation of the Problam and Solution

How should a set S of N planar points he represented in a real RAM to enable
efficient computation of DIAM,(S) and DIAM1(S)? Many data structures would be
suitable but the simplest is either an N-by-2 array or two arrays X and Y of lengjth N.
These representations are reducible to each other in linear time. Similarly, different
coordinate systems for the points (X-Y vs. polar, etc.) are linear-time reducible.
(The solution -- the diameter -- is simply a scalar real so its representation is not an
important issue in a real RAM.) For more complicated geometrical objects such as
polygons, polyhedrons, and Voronoi diagrams the issue of representation is not as

easily soived, and those problems will be tackled as we come to them.
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2.5. Algorithm for Lg Diameter of a Set of Planar Points

The Ly, diameter of a set of planar points can now be computed fairly easily.
This is because, as shown in Figure 2-1, the circle for the Ly metric is a
rectilinearly oriented square. The L, diameter is simply the diameter of the
smallest rectilinearly oriented square that contains all of the points. The diameter is
therefore either the difference in y coordinates of the highest and lowest points or
the diffcrence in x coordinates of the rightmost and leftmost points. Here is a

pseudo-Algol description of the corresponding algorithm:

Lo Diameter of a Set of Planar Points

Input: integer N > O, arrays X[ 1:N] and Y[1:N]
Output: Ly, diameter of the N points
Time: O(N), Stordage: Input + O(1)

YMin « YMax « Y[1];

XMin « XMax « X[1];

for 1 « 2 thru N do

begin
XMin « min( X[1], XMin );
XMax « max( X[i], XMax );
YMin « min( Y[1], YMin );
YMax e max( Y[!], YMax );

end; .

LeoDiameter « max( XMax=XMin, YMax-YMin )

The O(N) time complexity of the above algorithm is optimal to within # constant
factor because the algorithm must read all of its N inputs to ensure a correct
answer. Theare is, however, room for improvement; for instance, the computation of
max and min can be done in less than 3/4 as many comparisons as are taken above
[76]). Note that the storage required is actually O(1) rather than O(N) because no
computation involves more than the Ith element of X and Y at any given time. The

values in X and Y can therefore be read from a tape rather than stored in arrays.




24 December 1979, Geometric Transforms PAGE 20
2.6. Algorithin for L1 Diamgter of a Sct of Planar Points

In this sectlion we will construct an algorithm for the Ly- diameter of a set of N
points. We could start from scratch, but since the Lo, diameter algorithm is already
i available, it would be nice to be able to make the L4 diameter problem look like an
Lo diameter problem, that is, transform it {0 an Loy diameter problem. Fortunately,
L; this can be done, and the cluc is in Figurc 2-1. The circle for the Ly metric can be
' made to look like the circle for the Ly metric if it is simply rotated 45 degrees (and

" multiplied by a scale factor of 2!/2.) This leads us to the intuitive algorithm below:

L4 Diameter of a Set of Planar Points

Input: integer N > 0, arrays X[1:N] and Y[1:N]
Output: L4Diameter
Time: O(N), Storage: O(N)
! Rotate the points 45 degrees;
for | ¢« 1 thru N do
begin
X' e (X[1] + Y] 7 2V73;
Y e (=X[1] + Y[1]) 7 2172
X[]e Xy Y[i]evs
end;
! Compute L,,Niameter and scale by 21/2;
LyDiameter « DIAM,(X,Y.N) « 2}/3;

The hard part is proving that this algorithm is correct. Since the diameter is
simply the maximum interpoint distance, it will be sufficient to show that computing
the L4 distance by the definition in Section 2.1 is equivalent to the computation in
the algorithm above. Let p; = (x;y;) and p| = p; rotated /4 radians about the origin.
(The rotation can he clockwise or counterclockwise, as long as it is the same in
each case. In the algorithm above, we use the formulas x' = (x + y) cos(n/4) and
y' = (~x + y) cos(n/A4) to rotate the points N/4 radians clockwise.) The two

; are:
J

methods for compuling the Ly distance between p; and p
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1. (Definition) L Distance(p;p)) = |x; - x;| + ly; - y;l. and
¥ 2. (Migorithm) Ly Distance(p;.p;) = 22 - Loy Distance(p;'p;).

We prove this by reducing the second (algorithm) formula to the first (definition)

formula:

Y2 - L Distance(p,\p,) = y2 - max( |x! = ¥, Iy <y}
XY, =Xy

@ ol Pt

V2 V2
= max( l(xi.xj) * (Y"YI)‘. '-(xi-x") + (yl-y‘)l )
= L,Distance(p;,p;)

There are four possible cases to satisfy:
1.XI'Xj<°. yi‘Yj(Q,
2.xi-xj20. yi-yjzo.
3.xi-xj20. yi-yj(o.and
4.Xi'Xj<0. y,-yjzo.

fn each of these cases the identity holds. The algorithm for computing the L4

diameter is therefore correct.

2.7, Principles Covered

In this chapter we solved a simple geometric problem -- computing the L4
diameter of a set of planar points -- and demonstrated the use of a geometric
transform. Several principles have been presented that will be encountered
repeatedly in this thesis: precise specification of the problem, choice of a model of
computation, cost measures and analysis of the complexity, representation of the
problem and its solution, and, of course, the use of a geometric transform. The
choice of the transform (rotation) in the example of this .chapter may still seem like
something pulled out of a hat. Yet there is a method to it, as the following chapters

will demonstrate.
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3. Intersection and Union Problems

In this chapter we introduce two important techniques -- the use of a point / flat
duality and the combined use of inversion with embedding in a higher dimension --
and apply them to two geometric intersection problems. The first problem is the
intersection of N (UPPER) half-spaces and the second is the union of (the interiors
of) N circles. For both of these probiems we develop algorithms that are optimal
(within a constant factor). Finally, the last section of this chapter shows that the
techniques that we used for these two problems are actually more closely related

than they appear to be.

3.1. Interscction of Half-Spaces

In this section we anaiyze the problem of constructing the intersection of a set of
N (UPPER) half-spaces. The first topic that we cover is the representation of
half-spaces and their common intersection in a computer.. Given this representation
we then prove upper and lower bounds on the complexity of constructing the
intersection in two, three, and higher dimensions. We conclude with fast

expected-time algorithms and some open problems.

The reader should carry away three important tools for the construction of
geometric algorithms:
- A point / flat duality that is applicable to a number of problems in this

thesis. It is used for transforming (formidable} problems that involve
flats to (simpler) probiems that involve points.

- A tast algorithm for intersection of (UPPER) half-spaces. (An algorithm
for intersection of haif-spaces is useful for linear programming in two
or three variabies [91], intersection of convex polyhedra, and as a
tool for solving other geometric probiems.)

- The first of several important uses of the convex hull of a point set.

We will use these tools many times in succeeding chapters.
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3.1.1. Representation of Half-Spaces and Their Intersection

The first requirement of any representation of a geometric object is that it
contain all of the necessary information to describe the object, and the second
requirement is that il provide the information efficiently (both for encoding and
decading). We shall first describe such a representation for the two-dimensional
case (half-planes and intersections of half-planes) and then extend our
representation to an arbitrary number of dimensions. The details of our
representation can be easily modified to a number of forms that can be reduced to

one another in constant time for a single object.

We represent a half-plane by the line bounding the half-plane and a single bit to

“indicate which side of the line the haif-plane is on. There are many ways to
represent the boundary line, but we will use the slope-intercept form with the
understanding that vertical (or near-vertical) lines will require exceptional handling
(Appendix 1).4 The half-plane

ySax+bhb
can thus be represented as (a,b,0) and the half-plane

yzax+bh
can be represented as (a.b,1). In a computer these may be three (scalar) variables
or, if there are many half-planes, three elements of an array.

i
The representation of the intersection of N half-planes is more interesting.

Certainly one (cheap) method is to represent the N half-planes as described above
and include a scalar flag INT that indicates that the intersection is intended. This
has the advantage of representing the intersection fast (in linear time) but the
disadvantage that it doesn’t help us quickly answer important questiops about the
Intersection, such as "Is the intersection empty?". Another possibility is to append

to each of the N half-planes a flag that indicates whether or not part of the

4F‘reparma and Multer [34] uze a homogeneous coordinate representation, which treats all coordinates uniformiy.

Ty m————
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boundary of the haif-plane is also a boundary of the intersection. (If the boundary
of haif-plane | does not meet the intersection of the N haif-planes, then haif-plaine i
is redund..mt.) This representation enables us to answer quickly whether or not the
intersection is empty but in the worst case it does not enable a faster solution to
questions of the form "Is point P inside the intersection?". To answer such
questions quickly we must store the nonredundant’ half-planes in sorted order.
Since the intersection of N half-planes is a (possibly empty) convex polygonally
bounded region with at most N edges, the representation that we will use is the
quadruple '
(v, M[1:v], B[1:V], F[1:V]).

Here V is the number of edges in the intersection, M and B are the slope and
intercept, respectively, of the lines determined by the V edges, sorted in
counterclockwise order, and F is a bit vector that allows us to quickly distinguish

the inside from the outside of the intersection.

The representation of N K-dimensional half-spaces is a simple extension of the

two-dimensional case. If the half-space is

k-1
X S z ax, + a
is1

then the representation is simply

(a4, 82, ...8K.4, 8, 0).
Similarly, if the "<" is replaced by a "2" in the equation above, then the "0" will be
replaced by a "1" in the representalion. In a computer, we can represent N
K-dimensional half-spaces in one large array A[1:N,0:K] where the "sid.e“ bits are

stored in the entries A[i,0].

-

The intarsection of N K-dimensional half-spaces is more difficuit to represent.
This is because the total number of vertices, ecdges, faces, hyperfaces, etc. grows
exponentially with K. (If we choose to record only the haif-spaces with flags that

indicate for each haif-space whether or not it is redundant, then only linear storage
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is required. Unfortunately, as we mentioned for the twe-dimensional case, we would
not then be. able to answer quickly questions of the form "ls paint P in the
intersection?*.) We must first establish some terminology. Let a vertex be called a
O-face, an edge a 1-face, and, in general, a j-dimensional piece of the intersection
be a j-face. We will represent the intersection of K-dimensional faces by
enumerating the j-faces (for 0 £ j £ K-1) and recording how they are
interconnected. The representation of the intersection of N K-dimensional
half-spaces is the sepluple
(H., F, v, Connect1, ConnectiPtr, Connect2, Connect2Ptr),

where

H[1:h,1:K] represents the set of h flats determined by the K-1-faces I
of the intersection,

F[1:h] is a bit-vector of flags that enable us to distinguish the inside :
from the outside of the intersection. i

V[1:v,1:K] is the set of v vertices determined by the N half-spaces,
"Connectl is a table of |-faces used by ConnectiPtr,

Connect1pPtr[l,J] is the subscript of Connect1 for the first I+1-face
that the Jth [~tace hounds,

Connect? is a tablc of I-faces used by Connect2Ptr,

Connect2Ptr[1,J] is the subscript of Connect2 for the first [-1-face
that determine the Jth I-lface, in counterclockwise order,
Note that the four "Connect" arrays are jagged arrays rather than rectangular

array:. They are also redundant, for ease of use.

3.1.2. Lower Bound

We prove an (N log N) time lower bound for the intersection of N haif-planes by

+  demonstrating that an algorithm that intersects haif-planes can be used to sort. !

(The lower bound applies for all half-spaces of dimension K 2 2 because half-planes

are just a special case of K-dimensional half-spaces.) Our construction follows that
of Shamos [91].

Wb e e i ke 4 RES PRSP L ctniseman Y - ok b,
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Theorem 1: The intersection of N half-planes requires (N log N) time in
the worst case.

Proof: Given N real numbers a;, i=1, ... N we construct N half-planes by
by
hiiy2ax+ (a;/2)2.
These half-planes h; contain the origin and are bounded by lines that
have slope a; and are tangent to the parabola y = x2. The intersectisn of

g the h; is a convex polygonal region whose edges are sorted by slope. We
‘ simply read ofl the slopes of these edges to obtain the a; in sorted order.

The proof of the lower bound for intersection of half-planes requires a
lower bound for sorting under a mode! of computation that can support the
operations used in our construction above. This has been provided by
Friedman [43], who proved an Q(N log N) time lower bound for sorting
under a model of computation that allows analytic functions of the input.
Since our construction requires anly analytic functions, the (N log N)
lower bound for sorting applies also to the intersection of haif-planes.

3.1.3. Interscction of Half-Planes

Shamos [89] and Shamos and Hoey [94] show that the intersection of N ‘

half-planes has time compiexity @(N log N). Their algorithm for constructing the

intersection in O(N log N) time recursively applies their linear-time algorithm for
intersecling two convex N-gons. The algorithm that we describe below, on the
other hand, is hased on a geometric transform (point / flat t-iuality) that maps the
problem of intersecting half-planes to two problems of constructing the convex hull
of a planar set of points (and a simple intersection problem.) Furthermore, it

extends lo higher dimensions (unlike Shamos and Hoey's algorithm). We next

describe the decomposition of the two-dimensional problem into three subproblems.

The following sections characterize redundant half-planes, introduce the point / flat

duality transform and then appiy the transform to the intersection of half-planes.
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3.1.3.1. The Two-Dimensional Problem

In Figure 3-1 we illustrate the intersection of N half-planes. The intersection
itself is indicated by the shaded region. We partition the haif-planes into two sets,
UPPER and LOWER. A half-plane is in set UPPER if the line at its bounda'ry is above
the rest of the half-plane. Similarly, a half-plane is in the set LOWER if the line at
its boundary is below the rest of the half-plane. (If any boundary lines are vertical,
then we rotate all N half-planes a small angle.) The recason that we produce this
partition is that the tranzform (lo be dc:-?:ribcd) actually applies only to lines, not
half-planes. Since each line may be associated with two half-planes, we partition
the set of half-planes into two parts so that the half-plane determined by a line will
not be ambiguous. Our partition of the half-planes also enables us to divide the

problem of inlersecting the haif-planes into three parts:

1. Construction of U, the intersection of the UPPER half-pla.'ne‘s',
2. Construction of L, the intersection of the LOWER half-planes, and

3. The intersection of U and L.

(a) (b)

Figure 3-1: (a)Iinterseclion of N half-planes., (b) Interscction of regions U and L.

As shown in Figure 3-1b, part (3) is relatively casy. if U and L have O(N)

vertices, then the intersection (shaded region) can be constructed in O(N) time. We

I R Y

R

!
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descrihe the algorithm in detail as Algorithm IntersectChains below.
Algorithm IntersectChains

Input: Intersections of half-planes U = (N1, UM[1:N1], UB[1:N1]) and L = (N2,
LM[ 1:N2], LB[1:N2]) where N1 .and N2 are intégers such that N = N1 + N2
and UM, UG, LM, and LB are the slopes and intercepts of the lines
determined by the edges of U and LS The edges are sorted in
counierclockwise order:

UM[1] CUM[2] <. .. < UM[N1]
LM{1] < LM(2] < ... < LM[N2]

Output: Integer E (number of vertices of the intersection), arrays M[1:E], B[1:E]
(slopes and intercepts of the E edges), bit vector F{1:E] to distinguish

the inside from the outside of the half-planes.

Time: O(N), Space: O(N).

1. Scan U and L (vectors UM, UB, LM, and LB) from left to right until two
segments Intersect at a point P. (If no segments intersect then the
intersection of U and L is empty.) The scan can be done in O(N) time in
a manner similar to the O(N) time merge in the merge sort algorithm.

2. Scan U and L from right to left until two segments intersect at a point
Q.

3.1f P # Q, then return (in vectors M and B) the concatenation of the
chains of line segments of U and L between points P and Q.

4.1f P = Q, then the intersection is unbounded (or just the point P = Q),
in the case of an unbounded intersection we must determine whether
to return the chains to the left of P or the chains to the right of P.
This can be determined by comparing the slopes of the rays bounding
the left and right sides of U and L. If the slope of the left ray of U is
less than the slope of the left ray of L, then return the chains to the
left of P. Otherwise, return the chains to the right of P.

5Since U 13 an intersection of UPPER naif-ptanes and L is an intersection of LOWER halt-planes it is not
necossary 1o inciude il vectors indicating inside vs. cutside of the haif-planes.
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We have just seen how to construct efficiently the intersection of N half-planes,
given U and L, the intersections of tlie UPPER and the LGWER half-planes. Now we
must design a fast algorithm for constructing U and L. Since the construction of L is

so similar to the conslruction of U, we will describe only the construction of U.

3.1.3.2. Pedundant Half-Planes

Assume that the N half-planes are all UPPCR half-planes. Some of these
half-planes, such as haif-plane k in Figures 3-2 (a) and (b), do not bound any side
of the region. of inlersection. 1t would be nice if we could find all such half-planes
and throw them away since they do not contribute to the final result, Once that is
done, we can find the intersection of the UPPER half-planes rather easily. As we
can see in Figure 3-1 (b), the slopes of the sides of the chain U are monotonic
decreasing as we travel from left to right. Given the lines determined by the sides,
we need only sort the lincs by slope to delermine the order in which they intersect
to form the sides. Since the sort costs only O(N log N) time, we can construct the
intersection of the UPPER half-planes in O(N log N) time, once the redundant

half-planes have been eliminated.

LA
(a) (b)

Figure 3-2: (a) & (b) - k is redundant, (¢) - k is nonredundant,

How do we determine which half-planes are redundant and which are not? There
are two conditions that we need to check.

Theorem 2: An UPPER half-plane k is redundant with respect to UPPER
haif-planes i and j iff

(A) Line k is above the point P where lines i and j meet, and

(B) The slope of line k lies between the slopes of lines i and j.

——a it I NN .
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Proof: The half-spaces i, j, and k are

y £ aix + by, ySajx+bj. and y < apx + by

and lincs | and j meet at point
P= (Px,Py) = ( -(b;-bj)/(a,--aj), (ajbj‘ajbj)/(ai'aj))-

(See ligura 3-2.) Half-plane k is redundant with respect to half-planes i
and j iff line k lins above the two rays rjand r j originating at point P and
defining the boundaries of the intersection of haif-spaces i and j. There
are six possible cases to consider:

0<ai<aj. O(aj<ai. ai(0<aj
a;<0<aj, 2;<a;<0, and a; < 2; < 0.

Since many of these are equivalent, we necd to prove only the two cases

O(aj(ai and aj<0<ai.

Case (1) 0 € aj < a;: The ray r; points (downward) in the direction
(1.,-3;) and the ray r; points (upward) in the direction (1,aj). Line k lies
above r; and g ift

Py = au S ay (Py = u) + by, Yu20 and (1)

Py +au S ayg (Py + u) + by, Yu20. (2)

Letting u = 0 in either (1) or (2), we see that line k lies above point P,
satisfying condition (A) above. To prove condition (B), that ag lies

7 between a; and aj we divide by u in (1) and (2) and then take the limit
'ﬂ as u = 0, obtaining a; 2 ay and a; £ a, respectively. Conversely, if (A) is
satisfied (Py S agPy + by) and (B) is satisfied (0 < aj Cag < a;), then

inequalities (1) and (2) immediately follow.
Case (2) a; < 0 < a: The ray r; points (downward) in the direction

(1,-ap)) and the ray rj points (dowmward) in the direction (1,-a;). Line k
lies above r; and r; iff inequalities (1) and (2) hold. The proof is very
similar to the proof for Case (1). O

How fast can we delermine (non)redundancy for each of the N UPPER
half-planes? Certainly one approach is to test all pairs of haif-planes i and j for

each half-plane k. “That costs O(N3) time, though, which leaves much room for
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improvenient. In the next sectlion we show an entirely different way of looking at

this problem that solves it in a natural and efficient way.

3.1.3.3. A Point / Line Duality Transform

In lhis seclion we present a transform that exploits a natural duality between
points and lines in the plane. A line in slope-intercept form (y = ax + b) is uniquely
identified by the pair (a,b). (This transform wiil not work for vertical lines.) We thus
have a natural mapping from lines to points. We can also map points to lines. For an
arbitrary point (x,y) the set of 'au lines (in slope-intercept form) that pass through
that point can he represented by the set {(ab) |y ®ax +b }. This transforms a
point (x,y) to a line b = -xa + y. Points thus transform to lines and lines transform to
points by the formulas

y=zax+h = (ab), and

(x.y) = h=-xa+y.

This duality is illustrated in Figure 3-3.

Le

Figure 3-3: Point / Line Duality

This transform has an interesting property: Distances in the y-coordinate

between points and lines are preservecl.6 The dilference in y coordinate between

sThe restriction in the y coordinate is importand becauze it can e shown to be impossible to preserve the
Euclidean distance botwvicen a point and a line urder a duality \ransforn E02]‘
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point (c,d) and line y=ex +f is d - (ec +f). The difference in the transforms
b=-ca+d and (e,f) is (-ce + d) - f,, which is the same. [t follows from this that
incidence is preserved.7 If point (c,d) is on line y = ex + f, then it holds also for
their transforms =~ point (c¢,f) is on line b = -ca + d. Note further that not only is the
magnitude of the dislance (in the y-coordinate) preserved but also its sign. Thus,
above/belowneass is preserved. If (c,d) is above (below) line y = ex + f, then the

transform of (c,d) is above (below) the transformof y = ex + f.

There is another property of the transform that we should mention. The transform
is not involutory, but composition of it four times produces the following:
(xy) = b=z-xa+y = (-xy) = b=xa+y = (xy)
Only a slight change is requircd to make the transform its own inverse: express
lines in the form y +ax +b =0 rather than y=sax +b. Then it is true that
y+ax+b=0%(ab). But this has the unfortunate side effect that
above/belowness between points and lines is not preserved; it is reversed. [f point
(c,d) is above line y + ex +f =0 then the transform of (c,d) will be below the

transformof liney + ex + £ =0,

3.1.3.4. Application of the Transform to the Two-dimensional Problem

We now show how the transform enables us to intersect the UPPER (or LOWER)
half-planes fast. More specifically, the transform enables an efficient mechanism
for eliminaling the "redundant" helf-planes. Recall the two conditions for
redundancy of an UPPER half-planc: a half-plane k is redundant iff there exist
half-planes i and j such that (1) line k is above the point P where lines i and j
intersect, and (2) the slope of k is between the slopes of lines i and j. In the ab

plane there is a corresponding interpretation.

In Figure 3-4, line k is above point P in the xy plane. This is transformed to a

point k that is above /ine P in the ab plane. (Above/belowness between lines and

7There are other duality transforms that preserve incidence, sush as Plucker’s transform [91].
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Figure 3=4: Transform of a redundant half-plane.

points is prescrved by the transform.}) The slope of a line in the xy plane is the a

coordinate of the corresponding point in the ab plane.

Line k thus has a slope

between the slopes of lines i and j and transforms to a point k with a coordinate

between the a coordinates of points i and j in the ab plane. Figure 3-5 shows the

result of applying the transform to a sct of N UPPER half-planes. A point in the ab

plane corresponds to a redundant haif-plane iff it is directly above one {or more) of

the line segments determined by the N - 1 other points.

Figurc 3-5: Transform of N UPPER half-planes.

Theorem §_5 Given a set of N UPPER half-planes of the form

and a mapping

y £ a;x + by,

ySapx+by = {a,by,

the nonredundant half-planes correspond to those points on the bottom
part of the convex hull of the N points

(ai. bi)'

Proof: The proof is in two parts: (1) a point on the bottom part of the
convex hull corresponds to a nonredunclang half-plane, and (2) a
nonredundant half-plane transforms to a point on the bottom part of the

Koy in
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convex hul} of the N points.

1. Let P be a point on the bottom part of the convex huil of the N
points in the ab plane. P does not lie above any segment
connecting two of the N points because P would then not be on
the bottom part of the hull. [t follows that P can not be
redundant.

2. If a half-plane P is nonredundant, then it transforms to a point P
that does not lie above any segment connecting two of the N - 1
other points in the ab plana. P must be on the bottom part of the
convex hull because otherwise it would lie above such a
segment.

a

We have reduced the problem of intcrsecling N UPPER half-planes to the problem
of construcling the (batlom part of the) convex hull of N points. The convex hull of
N points in the plane can be constructed in O(N log N) time [48]. This leaves only
the detail of separating flle top frod\ the bottom part of the hull. To do that, we find
the leftmost point of the hull in O(N) time and then traverse the hull on the bottom
side until the rightmost point is reached.

Theorem 4: The intersection of N half-planes can be constructed in

- —

O(N—i-;g N) time.

Proof: We have broken the probliem of intersecting N half-planes into
three parts. Part (1), the inlersection of the UPPER half-planes, has
been shown to cost only O(N log M) time. Part (2), the intersection of the
LOWER half-plancs, is equivalent to part (1) so it can also be done in O(N
log N) time. Part (3), the intersection of the resuits of parts (1) and (2),
costs only O(N) time. The intersection of N half-planes can thus be

solved in O(N log N) time. O

It is interestling to note that we can also use an intersection of half-planes
algorithm to produce a convex hull of points algorithm. We first transform all N
points to UPPCR haif-planes by the formula

(xy) > b=xas+y
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and intersecl the half-planes. We trans/orm back to obtain the lower part of the
hull.  Then we transform all N peoints to LOWER half-planes and intersect the
half-planes and transiorm back for the upper part of the hull. Merging the upper and
lower parts is trivial, since the leftmost and rightmost points will be in each one.

The total time required is O(N log N).

3.1.4. Intersection of Three-Ditaensional Half-Spaces

The tecihnique that we just used in two dimensions can be extended-to the
intersection of N UPPCR (or N LOWER) three-dimensioral half-spaces. - (Zolnowsky

[106] and Preparata and Muller [84] describe all the details require to solve the

general problem of intersecting three-dimcnsionat half-spaces.) The following - -

sections extend the concept of redundant haif-space to thiree dimensions and apply
the (three-dimensional) point / flat duality to construct the intersection of N UPPER

haif-spaces in O(N log N) time.

3.1.4.1. Recundancy in Three Dimensions

The algorithm for constructing U in three dimensions is analogous to the algorithm
for the two-dimensional case. We first transform the N UPPER half-spaces to N
points in abc space and construct the (bottom part of the) convex hull of the points

in O(N log N) time. The points above the hottom part of the convex hull correspond

to “redundant" half-spaces and can be discarded. To form U we simply apply an

inverse transform to the bottom part of the convex hull. We will now describe this

procedure in declail.

Assume that there are N UPPER hail-spaces. Some of these half-spaces
contribute to ihe inlarsection U and some arc “redundant," such as half-space M in
Figure 3-6. For the plane there are two simple conditions for redundancy of a
half-plane. in throe dimensions there are two analogous conditicns for a half-space.
The first condilion for raedundancy of a half-space M is that plane M be above the
point P whera planes 1, J, and X intersect, as in Tigure 3-6. The second condition,

the "betwcenncess of slopes" condition, is more complicated to 2xpress. The
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Figure 3-6: A redundant half-space.

purpose of thc "hetweenncss of slopes” condition is to ensure that a plane above
the point P cannot drop down fast cnough to enter the region below planes |, J, and

K. We will now derive an algebraic description of these two conditions.

Let plane M be written
Z 3 apyx + byy * cy
and let planes |, J, and K he written
z:a'xﬁ'h'y#c',
zza;x+by+c;and

' Z3acx + by +c.

The point P = (P, Py. P2) where planes |, J, and K mect is defined by

<4 b 1 x G
'GJ -bJ 1 py L] CJ . (3)
’.‘ .bK 1 P‘ cK

The three rays f1ge FJK. and rc; can be expressed as vectors originating at point P.
The directions of these three vectors are obtained by computing the cross products
of the normals to planes |, J, and K. For example,

-
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T IR |a b -1
Ny = (d“\ ﬂIJ‘ ‘Yu) = b( -1 x ay bJ -1
a; by -1 a, b -1

where I': I. and K are unit vectors along the x, y, and z axes, respectively.
(Similarly for r i and 'Ki-) We may now express the two conditions for redundancy
of a half-space.

Theorem §: Let UPPER half-spaces |1, J, K, and M, point P, and rays r,

—

K> and rgy be as given above. Half-space M is redundant with respect
to half-spaces |, J, and K iff

apPy * byPy + ey 2 P, (4)

and

agoy *+ by 2 vy
ayegk + BBk 2 Yux (5)
apay; + b 2 vy

Proof: M is redundant iff it lies above all points of the three rays ry,
rgK. and rij. But M lies above these three rays iff

ay (P, +uay) + by, (Py +ufy) + oy 2 (P ) V0,
ay (P +uay) + by (P +ufy) + ey 2 (P, +uy i), Vi, and
ay (P, +uay)) + by (P, +ufy) + o > (P, +ug) Vudn

Letting u = O we obtain the first condition (inequality (4)) for redundancy
of M
aMPx + hMpy + Cm 2 PZ

and dividing by u and taking the limit as u = ® we obtain the other three
conditions (5). Conversely, if the four inequalities of (4) and (5) are
satisfied, then M must lie above all points of the three rays ryj. rgK» and
rg)e We prove this by simply multiplying both sides of the last three
inequalities (5) by a u > 0 and adding the result to the first inequality (4).

a.

L e R
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3.1.4.2. Application of the Transform to the lntersection of Half-Spaces

The transform that we use in three dimensions is a straightforward extension of
the two-dimensional transform: planes transform to points and points transform to

planes. The formulas for the transform m'e:8

zzax + by +c = (ab,c), and
(x,y.2) = c=-xa+-ybe+z

The distance between a point and a plane in the z coordinate is preserved by
this transformn and, most imporlantly, the sense of above/belowness (in the 2
coordinate) hetween points and planes is also prescrved.

Theorem G: Let the UPPCR half-spaces |, J, K, and M transform to
‘points Py Py Pk, and Py by the transform (G). Half-space M is redundant
with respect to half-spaces |, J, and K iff point Py, is directly above some
point in (or on) the triangie determined by points Py, P, and Py.

Proof: Plane M (z = ayx + byy + cpy) of Figure 3-6 transforms to the
point (aM.hM.cM) in abhc space, and planes ), J, and K transform to the
points

Py = (agby.cp) PJ-= (agbgey), and Py = (ag.bg,cg).

The inequality (4) (of the previous section) for redundancy of half-space
M (point (apg.bp.ep)) can be rewritten

cpm 2 (-Pylagy + («Pylby + P,
The interpretation in abe space is that paint (apbpecp) lies above the
plane
c=(-Pyla+ (-Py)b + P,

By inspection of Equation (3) we aiso see that this plane is determined by
the three points Py, Py, and Pg. The three “betweecnness of slopes”
conditions (5) define three vertical planes, cach of which passes through
two of the three points Py, Py, and Px. Since haif-spaces |, J, and K are
all UPPER half-spaces, the sct of redundant points Py is a bounded

‘Dam:iq (28] uses the above transform in the context of lincar programming and Hutfman [53] uses an aimost
identical transform for an analysis of polyhedral scones. Kanade (57] uses his transform for what he calis the
“origann worki® of livec-dimenzional figures,

6
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region of abc space. The intersection of the three half-spaces of
conditions (5) and the half-space (4) is therefore the region in, on, or
above the triangle determined by points Py, P, and Py. O

Corollary: Let the N UPPER half-spaces Hy, Hp, . . . Hy transform to
points P4, Pp, . .. Py by Equation (G). A half-space H is redundant iff
point P| does not lie on the bottom part of the convex hull of points P1.
P2| oo pN.

We can construct the (bottom part of the) convex hull of N three-dimensional
points in O(N log N) time. We do this by augmenting the algorithm of Preparata and

Hong [83] for constructing the {eantire) convex hull with a mechanism for separating

the bottom part of the hull from the top. One way to do this is to maintain with each -

face F of the convex hull a vector perpendicular to F that points toward the inside
(as opposed to the outside) of the hull. The hottom faces of the hull are those
faces whose vectors point upward and the vectors for the top faces point
downward. (Note that there will be some vertices in both the top and bottom parts
of the hull. These are the vertices that bound both top and bottom faces.) The
bottom and top parts of the convex hull are therefore separable in O{N) time, once

the entire convex hull is constructed in O{(N log N) time.

Figure 3-7: Transform of a convex hull.

To find the intersection of the UPPER half-spaces, we must transform the bottom
part of the convex hull to xyz space. The O(N) vertices transform, of course, to
planes. But there is much more information than that in the convex hull. For

instance, defining each face of the hull there are three coplanar vertices 1, J, and K.

e ——
. —
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9 The plane that these vertices define is transformed to a point in xyz space. This
point is where planes |, J, and K (of xyz space) intersect. (This follows from the
fact that the transform preserves incidence between points and planes.) Also, as
illustrated in Figure 3-7, if faces F¢ and F_ of the (bottom part of the) convex hull
share an edge V|V, then in xyz space faces V| and Vj share an edge FF, . In fact,
even the unbounded faces of U in xyz space can be obtained from the transform.
These faces of U correspond to vertices at the boundary between the top and
bottém parts of the convex hull in abe space. Little computation is thus required to
construct U after the transform from abe space since all the faces, vertices, edges,
etc. are dircctly obtainable from the transform. We have
Theoren 7: The intersection of N UPPER three-dimensional half-spaces

can be constructed in O(N log N) time.

Proof: Since the transform costs only O(N) time, the total time to
construct U is dominated by the time to construct the convex hull in abe¢

space, which iz O(N log N) time. 0

3.1.5. Intersecting Half-spaces in Four or More Dimensions

Suppose that in K dimensions we can construct the convex hull of N points In
H(N,K) time; we can then construct the intersection of N UPPER K-dimensional
half-spaces in O(H(NK)) time. The algorithm is a straightforward extension of the
one that we used in the three-dimensional case. We first transform the N
half-spnc'cs to N points in K-space. Then we construct the convex hull of these N
points in H(N,K) time. Then we partilion the top from the bottom part of the hull and
transform the bottom part back to obtain the intersection of the N UPPER

half-spaces. of the hull, and transform the bottom (tap) part of the hull back.

In this section we present an algebraic description of the components of the
K-dimensional algorithm, The first step is to describe algebraically the conditions

under which an UPPER half-space M is redundant with respect to a set § of X UPPER

gAswmmg that the vertices are in general position. If not, then there may be four or more coplanar vertices.
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half-spaces. We then present a general duality transform for K-space and interpret
the conditions for redundancy in the transform space. Finally, we characterize
reduncdancy among N UPPER half{-spaces in terms of the convex hull of the N points

to which they transforni.

3.1.5.1. Algebraic Description of Reduindaney

We must first introduce some terminology. Let a "j-face" of a K-dimensional
polytope he denoted as follows: a vertex is a C-face, an edge (a line segment) is a

i-face, etc. Let S be a set of K UPPER K-dimensional half-spaces defined by
K-1
x¢ € Z ax, + ay i=1,..,K
=1

and let M be an UPPER K-dimensional half-space defined by
K-1
xg & Z QX * Ak

=

Let the matrices B and C be defined by

ayy By wee By =1 atx-]

az‘ azz e 32IK_1 '1 GZK
B = « + « | oaa c=-| -1

[ ak1 k2 - -- Aot 1 L 3Kk

The flats bounding the K haif-spaces of § meet at a point P =(Py, Py,..., Px)
defined hy

BP! = C. (7
In three dimensions the planes |, J.\and K determine three rays ryj, rjx. and 'Ki
originating at point P, In K dimensions we have K such rays, denoted LET 2> S 73
where r is the ray determined by the K-1 elements of S - (i}. If (a;1, aj2 - - - @jK)

Is a vector pointing in the same direction as ray i, then we may write ray i in
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parametric form as

(X|.X2. o XK) = (P1.Pa. o pK) + U (an.aiz. s aiK)' u2 0.
On the otlher hand, each point (x,.xz. « Xg) of ray i must also lie on all K - 1 flats
of § - (i):

a1 8 e Ay " a
. . S
L] L] . x1
. . . . X, .
B0 812 cee Bgker tV L p ] 8k
8411 812 o o0 Fayxer T . L
. . . . - 1Lxx .
L aK1 aKZ s e e aK‘K,, '1- = GKK o
Combining these two equations we obtain
a” a‘z v a"K'.' 1
. . . . N S
. . . . . & 0
. . » . . a'z 0
a._"«‘ ai_‘.z « s ai.“k-_1 '1 .
Bint,1 Bjer2 o0 Bpggey ) .
N I 0
- aK‘ aKZ s o0 a"'K_‘ "1-

To solve this system of K - 1 equat'ions in K unknowns we take advantage of the

following properly of cofactors:

K

2. by cof,.(B) = det(B), ifi=m

i=

=0

(8)

iti#m.

where cof i j(B) is the cofactor of bij- it follows that the general solution is

(ay WR{Qs oo o “iK) = ¢; x (cot;¢1(B). cofiz(B). .o cofiK(B)).
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where ¢; is a constant for each i. The choice of ¢j is not entirely arbitrary since
SGN(c;) determines whether ray i points up or down. The correct choice for c

satisfies

K-1

pK'+ aiK < 21 alj (Pj + aq) *+ ey
j=

because each point of ray i (beyond paint P) should lie below the half-space i.
Using the dcfinition of P and the above properlics of cofactors we can prove that
0 £ ¢; del(B). The vectors o are therefore chosen to be

(an @jos + - ajg) = det(B) x (cofj1(B), cofjo(B), .. .. cofk(B)).

Theorcm 8: Let the UPPER half-space M, the set S of K UPPER
K-dimensional half-spaces, point P, and K rays § be as given above.
Half-space M is redundant with respect to the K half-spaces of S iff

K-1
Pe S 2 auP + ayk (9)
and
K-1
% a@dy 2 ag =0 K (10)
J:

Proof: llaif-space M is redundant iff flat M lies above the rays I i
1, ..., K. We can express this condition as

K=
<

1
z; Ay (P). + ““i)) + By, TUXO0, 0=, K,
=1

F’K + U £

If M is redundant, then we can abtain condition (9) by simply setting u
0. Condition (10) results from dividing by u and taking the limit as u = 00,
Conversely, if conditions (8) and (10) are satisfied, then M must be
redundant. Simply multiply condition (10) by u 2 0 and add the resuit to
congdlition (9). O.
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3.1 .5.2.'Thc General Transform

Before we can characterize redundancy in the transform space, we must first
elucidate the important properties of the K-dimensional transform. This transform
maps nol only flats to points and points to flats, but also j=spaces to K-j-1-spaces.

General Transform: The transform of a j-dimensional subspace of
K-space is the set of all flats that contain it. This is a K-j-1-dimensional
subspace of flats. Since each flat can be readily represented as a point,
hawever, the transform of the j-dimensional subspace is represented as a
K-j=1-cdimensional subspace of paints.

Theorem 9: The general transform preserves incidence. In other
words, if a ]q-dimensional subspace of K-space is a subspace of a
jo-dimensional subspace, then the transform of the jp-dimensional
subspace is a subspace of the transform of the j4-dimensional subspace.

Proof: We may interpret the jq-dimensional subspace as an
intersection of K-j; flats and the jo-dimensional subspace as an
intersection of K-jo flats. That is, we may define define the
jq-dimensional subspace by

s - s —-—
8y 833 ... A ! a
a2| * azz .o a:."x_1 -1 .. 82,(

X, .
. - . . . Xz .
. . . . .1 ..
8k.iz 1 Aej2,2 v Bkejaker T . 8Kk.j2.K
. ° . . . -xK- .
LGK_”'l aK_“'z LY aK_“.K_1 .1- _GK.j.I'K-

and lhe jy-dimensional subspace by
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The transform of the j,-dimensional subspace is the set of points of the

form

and the transform of the j-di

the form

It is easy to see that the transform of the jy-dimensional subspace is a

Yy
Uz
a’1 a21 . o0 aK.j2|‘ LI ax_j1'1 L
312 azz oo ax,‘z'z oo e ax_,'hz ™y
_ K-j2
a‘x azx LI I aK_‘le - o ¢ aK-jl‘K u
- - K=j1-1
K-jy-1
1 -
- is1

-
a,y 82 -

a2 922 -

3

+ e
. ak-,z'z

*© 8kej2k_

mensional subspace is the set of points of

Uy

Uz

Uk.ja-1
K-j3-1
z Y,

it

1 -

-

subspace of the transform of the jq~dimensional subspace. O.

y;
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3.1.5.3. Redundancy in the Transform Space

Having presented both a zharacterization of redundancy of a half-space and the
general duality transform, we can now interpret the conditions for redundancy in the
transform space. The K flats bounding the haif-spaces of S transform to K points by

the formulas

K-1
X 3 z ax; + 8, 2 (anop..aagh izt o,k
j=1

and the flat bounding haif-space M transforins to point M by

K-1
X = 21 auiXp * A > (Ayp Byz o agg)-
j:
Since the transform preserves incidence (Theorem 8), the flat determined by the K
points (a4, T2 T aghi=1,..,K is simply the transform of the point P
determined by the K flats of S§ (Equation (7)). Letting the coordinates of the

transform space be z4, 23, ... 2, this flat is

K-1

ZK = z (-p‘) Zj + PK.
L=

We can now interpret the first condition (9) for redundancy of half-space M (with
respect to S) as a condition on point M and the flat determined by the transforms of

the K elements of s:'

K-1
=

We have therefore proved

Theorem 10: The first condition (9) for redundancy of UPPER
half-space M with respect to the K UPPER half-spaces of S requires that
point M (in the transform space) lie above the flat determined by the K

l&»‘ . . e

L e
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POilltS (an. aiz. PRFSPE aiK), i= 1, PP K.

The other conditions for redundancy of M (the "betweenness of slopes"

conditions (10)) map to a set of K half-spaces in K-1-space

K-1
2 @ijzj 2 ai
j=1

in which the point (apgq, aggos - - - aM.K-1) must lie. The (K-1-dimensional) points

that satisfy these K conditions are

— — p - - -
2y A4y 8y - ev 8o Uy
22 alz azz o s 0 aK-1'2 uz
. = . . . (11)
| Zk-1 ] L3k Qo o0 8xar kg LYKt
where
K
Su =1 and u20is1,...,K (12)
i=1

That is, the points that satisfy the "betweenness of slopes” conditions must lie
inside the convex hull of the K-1-dimensional points
(a“ . aié. oo e ai.K-1)v i=1,...K. We prove this assertion as follows. Any point in
K-1-space can be written in the form of equation (11) if the restrictions of (12) are
ignored. (We have, in fact, one extra degree of freedom.) The "betweenness of

slopes" conditions are therefore
K-1 K-1 K

z a2 = 21 det(B) cof,(B) hz1 apuy 2 ay = det(B) coty(B), i=1,,.. K,
j= =

which reduce to ’

BRI ot s P} .
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K K-1
det(B) z uy z cof, (B)by, 2 det(B) cofy(B), i=1,...,K
. h=1'  j=1

But since all entries in the Kth column of B are -1, the properties of cofactors (8)

allow us to reduce this further to

K
det(B) | cof;(B) z u, + det(Blu | 2 det(B) coty(B), i=1,.,. K (13)
h=1 '

This is certainly satisfied for all | if the restrictions-of (12) hold; the converse is
also true. Any point Q that does not satisfy (12) can not lie in the convex hull of
the points (ajq, &j2. ..., 8.1} i=1,..., K. Here we can take advantage of the
extra degree of freedqm mentioned above to express the point Q as a linear

combination of these K points such that
u, =1 but u, < 0 for some i.

1t is easy to see that such a point does not satisfy the conditions of (13) and is

therefore not redundant with respect to S.

We have just proved

Theorem 11: The “betweenness of slopes® conditions (10) for
redundancy of UPPER haif-space M with respect to the K UPPER
halt-spaces of S require that the point (ap;1, 82 - - + Ay k-1) lie inside
the convex hull of the points (a;1, iy -+ ai.K-l)' izl ...k

Combining Theorems 10 and 11 we obtain

Theorem 12: UPPER half-space M is redundant with respect to the K
UPPER half-gpaces of S iff point M lies directly above some point in the
convex hull of the points (a;y, 3j, . . w 3j) i% 1, . 0w K.
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3.1.5.4. Redundancy Among N Half-spaces

tn this seclion we characterize redundancy of half-space M with respect to a set

of N 2 K K-dimensional half-spaces. (if N is less han K then there can not be any

redundant half-spaces unless some are parallel.)

half-spaces in terms of redundancy with respect to K half-spaces,

the convex huill of the points to which the K half-spaces transform,

Theorem 13: Let T be a set of N UPPER K-dimensional half-spaces.
UPPER haif-space M is redundant with respect to the half-spaces of T iff
M is redundant with respect to the haif-spaces of a subset S of T that
contains exactly K half-spaces.

Proof: It is clear that if M is redundant with respect to a subset S of T,
then it is redundant with respect to T. We shall nhow establish that the
converse is also true. Let U be the intersection of the N UPPER
_half-spaces of T. Uis a convex polytope because it is an intersection of
half-spaces. If a half-space M is redundant then its boundary (flat M)
lies completely ahove U. Let V be the point of U that is closest to flat
M. (If the closest point is not unique, then let V be any vertex of U that is
in the set of closest points.) Since U is a convex polytope, V is (or can
be choszn to be) a vertex of U. Let S be the set of half-spaces whose
boundarics meet at point V. If the half-spaces of T are in general
position, then S contains exactly K half-spaces. Since U is convex, we
can travel from verlex V along the boundary of U in any direction and the
distance to flat M will be nondecrcasing. It follows that the boundary of
U can never intersect flat M and therefore half-space M is redundant

with respect to the K half-spaces of S. (.

We have just characterized redundancy of a half-space M with respect to N

redundant with respect to a set of K half-spaces iff point M lies above a point in

therefore

Theorem 14: An UPPER half-space M is redundant with respect to a set
T of N UPPER K-dimensional half-spaces iff the point M (to which
half-spacc M transforms) lies directly above a point in the convex hull of
the N points of the transform of the N half-spaces of T.

Since by Theorem 9 the components of the convex hull correspond to components of

the intersection of half-spaces, we have

But M is

We have
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Theorem E_ If H(N.X) is the time (o conslruct the convex hull of
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N

points in K-space, then N UPPER K-dimensional half-spaces can be
intersected in O(H(N,K)) time.

3.1.6. Open Problems

There are still a few open problems concerning intersection of half-spaces.

1.

3.

The time to intersect N (UPPER) K-dimensional half-spaces depends on
the time H{N,K} to construct the convex huil of N K-dimensional points.
We know that the worst-case time complexity is @(N log N) for two
and three dimensions but for four or more dimensions only the Q(N2)
time lower bound has been proven. (See Section 1.1.1 for a
description of our knowledge of convex hulls.) For K2 4 dimensions
we lack tight upper and lower bounds on H(N,K).

.Under some conditions the expected-time for intersection of

halt-spaces may be less than the worst-case time. We may use fast
expected-time convex hull algorithms to obtain fast expected-time
intersection of half-space algorithms. For example, in two and three
dimensions if the expected number of nonredundant half-spaces is
O(NP) for some p € 1, then N half-spaces can be intersected in O(N)
expected-time [16]. Since the convex hull of N K-dimensional points
can he constructed in O(N) expected-time, if the K coordinates have
independent distributions (10, 30] , we can intersect N K-dimensional
half-spaces in O(N) expected-time if the N half-spaces transform to N
points whose K coordinates are distributed independently. Under what
other condilions may we intersect haif-spaces in fast expected-time?

We can intersect lwo convex (three-dimensional) polyhedra in O(N log
N) time by simply treating it as a problem of intersecting half-spaces.
Can we improve this to O(N) time? (In two dimensions, convex N-gons
can be inlersected in O(N) time whereas it requires O(N log N) time to
intersect N half-planes in the worst case.)

How tast can we intersect N half-spaces on-line in two or more
dimensions? (Shamos [91] has presented an O(N log N) time planar
on=linc convex hull algorithm and Preparata [78] has refined that to an
O(N log N) time rcal-time algorithm. Qoth of these algorithms update
the convex hull as each point is read -- rather than operating on ail N
points collectively -- but the on-line algorithm may require up to O(N)
time for any particular update whereas the reai-time algorithm always
requires at most O(log N) update time.)
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3.2. Union and Interscction of Disks

We present the problem of constructing tha union or intersection of a set of disks
(the interiors of a sel of circles) not for its applications, but because the solution
presents several techniqies that are useful for solving many other problems. We
introduce two new transforms, inversion and embedding in a higher dimension.
Inversion is used to convert problems that involve circles or spheres to problems
that involve lines or planes. Embedding in a higher dimension adds another degree
of freedom to the problem, which can permit application of techniques not applicable
to the original problem. The disk algorithm combines inversion and embedding to
transform the problem of constructing the union or intersection of a set of N disks to
the problem of intersecling N three-dimensional half-spaces, which we have solved
in O(N log N) time.10  Another important feature of the algorithm is that it
demonstrates an example of how a nonconvex object (the union of disks) can be

represented by a convex object (an intersection of half-spaces).

3.2.1. Representation of Disks and Their Union or Intersection

A disk is the set of all points within a given positive radius R from a planar point P.
1t the coordinates of P are (Px,Py), then the disk may be represented as a triple
(Px,Py.R) and a set of Jisks as a set of such triples. The best representation for
the union or the intersectlion of a set of disks depends on what kinds of information
about the union or intersection we want to retrieve efficiently. For several
applications the bhest representation will be as an intersection of half-spaces in the
transform space (to be described), but for other applications we may need a
representalion in the original space. We will not describe either representation in
detail because we have already described the representation for intersection of

half-spaces and the representation in the original space is only a slight modification

10gpamos and Hoey [94] deseribe an O(N log N) time intersection of N disks that is a modification to their
algorithm for interzecting half-planes. Thewr algorithm unfortunately does not extend 1o an O(N log N) time
algorithm for the union of N disks.
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of the representation for polygons.

3.2.2. Lower Bound for the Union or Intersaction of Disks

We prove that an algorithm that constructs the union or intersection of N disks
can be used to sort. Since there is an Q(Nlog N) time lower bound for sorting
(under the same madel of computation used in the construction telow), we have an
Q(N log N) time lower bound for constructing the union or intersection of N disks.

Theorem 1G: The construction of the union or the intersection of N
disks takes (N lcg N) time,

Proof: Let S be a set of N reals t; € [0,1).i= 1,..., N. For each real t;
we have a disk d; centered at (x;.y;) with radius two where

(Xi. yi) = ( COS(Zﬂti). sin(ZI'Tti)).

As illustrated in Figure 3-8, the points (x;.y;) are all on the unit circle and
‘ the boundaries of the disks d; are tangent to the unit circle. The union of
- the disks d; is represented by a closed chain of circular arcs
(ab-bc-cd-da.in Figure 3-8). The order of the arcs in this chain forms a
sort for the N reals t. Similarly, an intersection of the same N disks is
1 ) represented by a closed chain of circular arcs (he-ef-fg-gh in Figure 3-8)
1 whose order sorts the reals t;.

Figure 3-8: Sorting with a union or intersection of disks algarithm.
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The proof of the lower bound requires an Q(N log N) time lower bound
for sorting under the same model of computation used to construct the N
disks d; from the N reals ;. Since the construction of circles uses the
functions sine and cosine, a model of computation with oanly linear
functions of the input is not sufficient. As for the intersection of
half-spaces, we may use Friedman's [43] result that sorting has an
Q(N log N) time lower bound even when arbitrary functions are allowed at

internal nodes of the decision tree and the output functions are analytic.
Since sine and cosine are analytic, the Q(N log N) lower bound for sorting
carries over to the union and intersection of disks.

3.2.3. The Inversion Transform

QOur algorithm for constructing the intersection or union of N disks is based on the
properties of the invarsion transform. We will first describe the two-dimensional

transform and then generalize to three (and higher) dimensions. For more information

on inversion we refer the reader to Dodge [36).

The inversion transform is determined by two parameters: (1) the center of
inversion, and (2) the radius of inversion. For simplicity of exposition we shall
assume (for now) that the center of inversion is the origin and that the radius of
inversion is one. |If a point P has polar coordinates (R,@), then the inversion
transform of P is

(R,g) = (1/R,0).
Inversion maps a vecto: in the direction @ to another vector in the same direction
but with its magnitude “inverted." Note that inversion is involutory -- application of
inversion twice yiclds the original point. Figure 3-9 illustrates another important
property of inversion in the plane. A circle that passes through the center of
inversion transforms to a line that does not pass through the center of inversion, and
vice versa. Furthermore, the interior of the circie transforms to one of the
half-planes determined by that line and the exterior of the circle transforms to the
other hailf-plane. The properties of inversion in three dimensions are analogous. The

transform can be expressed in spherical coordinates as

(R8 &) = (1/R0.¢)
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This transform is involutory, as in two dimensions, and it also transforms any sphere
that passes through the center of inversion to a planc that does not pass through
the center of inversion. The interior of the sphere transforms to a half-space
bounded by that planc and the exterior of the sphere transforms to the other

half-space.

Figure 3-9: Inversion transforms lines to circles and vice versa.

3.2.4. Algoritiun for Intersection or Union of Disks

We will now exploit the properties of the inversion transform to construct a fast
algorithm for the- union or intersection of disks. We will first describe the simple
case where the circles bounding the N disks share a common point P, and then

generalize the result to an arbitrary set of N disks in the plane.

Figure 3-10 illustrales the special case where the N boundary circles share a
common point P, Let C; denote disk i, for i=1,..N. Since circle i passes through point
P, inversion about P transforms C; to a half-plane H;. It follows that the union of the

N disks transforms to the union of N half-planes:

N N
Ueg = Un
is1 i=1

Similarly, if X denotes the complement of X, then the union of the C; transforms by
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which can also be solved as an intersection of haif-planes. Since N half-planes can
' be intérsected in O(N log N) time, we have
Theorem 17 The union or intersection of N disks can be constructed in

E‘ O(N log N) ume when the circles bounding the N dzsks share a common
, point P.

IRl A R AR Sttt e an i aliiint - KR - o5

In general, however, the N circles will not have any point P in common. n fact,

the disks may be enlirely disjoint. Nevertheless, we can manipulate the general

problem so that it looks sufficicnly like the special case that inversion can be

applied to obtain a fast algorithm,

C

Figure 3-10: Special case for inversion: All boundary circles meet at point P.

Theorem 18: The union or intersection of N disks can be represented
as a convex polyhedron in O(N log N) time.

Proof: We illustrate the construction in Figure 3-11. We first embed
the N disks in three dimensions with the disks ail located in the xy plane.
We then choose an arbitrary point P that does not lie in the xy plane. For
each disk ¢ there is a unique sphere that passes through point P and that
intersects the xy plane at circle c.!! we can thus represent the N disks

11A sphere is determined by four parameters, the three cocrdinates for 15 center and the radius. A circle and a
noncoplanar point determune a umique phere because requiring the sphere to pass through the circle costs three
degrees of freedom and requiring the sphere 1o pass thiough the poirt determines the fourth,

ey

€ e iTn iliaait s Wt WS e s i e o . . .
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in the xy plane by N balls whose (spherical) boundaries share a common
4 : point P. Inversion aboutl point P trunsforins the N spheres to N planes, the
? balls to half-spaces, and and the cxteriors of the balls to complementary
g half-spaces. The interseclion of N disks is thus represented by the
E intersection of N half-spaces. Similarly, we represent the union of N disks
' by (the complcment of) the intersection of N (complementary)
half-spaces. Since we can interscct N half-spaces in O(N log N) time, we
can represent the union or intersection of N arbitrary planar disks by a
convex polyhedron in O(N log N) time. O.

Figure 3-11: General case for intersection or union of N disks,

3.2.5. Related probloms

We will now briefly describe a few issues related to the union of disks that we

have not yet covered.

1. We can generalize our technique for representing the union or
interseclion of disks to also allow subtracting circular regions from a
union or intarsection of disks. Since cach circle maps to a plane in
three-space, there are two three-dimensional half-spaces that we
may assnciate with a given circle. One half-space corresponds to the
interior of the circle and the olther corresponds to the exterior. We
may thus represent any intersection of the interiors of circles or their
complements by an intersection of half-spaces. .

2. Suppose that we wanted to preprocess N disks so that given an
arbitrary planar point we could quickly determine if the point lies in any
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of the N disks. If we represent the union of he disks as an
intersection of half-spaces, then lhis probleim becomes the problem of
determining if a poinl in three-space lics within a convex polyhedron.
This problem is equivalent to locating a point within two planar
» straight-line grﬂphs.12 As we mentioned in the introduction, location
ki' of a poinl within a planar graph of size M can be done in O(log N) time
given O(N log N) preprocessing time and O(N) storage [70]. We must
also note that location of a point in a set of circles is a decomposable
searching problem [5].

3.3. Derivation of the Point / Flat Duality

The interseclion of half-spaces involves a point / flat duality and convex hulls
whereas the unian of disks depends on inversion {and embedding in a higher
1 dimension). In lhis seclion we show thal these techniques are closely related by

deriving the point / flat duality as a iimiting case of inversion, linear transforms, and

a circle / point duality. In the construction we dcmonstrate the relationship

between convex hulls and the union of disks or half-spaces.

T Y T T

Figure 3-12: The union of (the interinrs of) circles that meet at a point P.

In the previous section we constructed the union of (the interiors of) N circles

1ZSimply break the convex polyhedron into UPPER ar.t LOVWESR parts and project beth parts orthographically to
planar graphs in the xy plane, I 8 theeo-dunensianal powt P projests to a pianar pont in region R of the UPPER
graph and reqion S of the LOWER graph, then P lies within the cenvex polyhedron iff P lies below face R and
above face S of Ihe polyhcdron,
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with a pointt P in common by {irst using inversion to transform the interiors of the

circles to half-planes. In Figure 3-12 we demonstrate an alternate solution:

Construction of the Union of M Disks whose Boundaries Share a Point P

t.Let Cj,i=1,... Nbhe a set of disks whose boundary circles meet at '
point P. Transform each of the N disks C; to the points Pi diametrically
opposite point P, (This is the Circle / Point duality.)

2. Construct the convex hull of the set of the points Pi. i=1,...,N
augmented with point P,

3. A disk C; is nonredundant in the union of the N disks iff its transform P;

is a verlex of the convex hull. To obtain the circtilar arcs defining the

union we simply transf{orm the vertices of the convex hull back to

disks, obtaining the endpoints of the arcs from the points where

neighboring disks intersect.

Since the most expensive step in the algorithm is the construction of the convex
hull, the total time is O(N log N). We will onit the proof. that the algorithm correctly
constructs the union of the N circles because, as we shall see, it is essentially

equivalent to our proof of the algorithm {or intersection of haif-spaces.

Figure 3~13: The union of half-planes trans{orms to the union of disks.

In Figure 383-13 we illustrate the union of a set of half-planes, each of which does
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not contain point p.13 By inverting the half-planes about point P we transform the
union-of half-planes problem to a union of disks problem where the circles bounding
the disks all meel al point P. But as we just saw, we can construct the union of the
disks hy transforming them to points and constructing the convex hull of those

points (and point P). We will now describe the transform algebraically.

To make the mathematics simpler we can assume that the point P lies on the
negative y-axis:
P=(0R), R<CO.
Our algorithm inverts each haif-plane about peoint P, obtaining the interior of a circle,
and then maps the circle to the point diametrically opposite P. We express this as
y=ax+b = (-q;/(h-R), R+ 1/(bj-R)),i=1,...,N.
To show how this relates to the peint / fiat duality that we used in Section 3.1 for

intersecting half-planes, we must now use a trick.

Recall from Step 3 of our algorithm for constructing the union of the disks, a disk
C; is nonredundant iff its transform P; is a vertex of the convex hull. If the convex
hull is translated. stretched, or rotaled the vertices will still remain vertices and the

points inside the hull will remain inside the hall. In particuiar, the transform

x' R O X 0
Y3 = v d + 2
Yl 0 =R LY R¥-R
applied to the point P and points P, i = 1, .., N will not affect our determination of
which points lie on the convex hull and which do not. Our new transform, inversion

of a half-plane about point P followed by the circle / point duality and our linear

transform, can he expressed as

13Wc can alternately thinh of the union of haif-planes as the complement of the intersection of the
complemontary half-plancs.
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y = ax+b, = (-a;R -b:‘n).

b,-R’'b,-R

Note also that point P transf{orms by

P=(0R) = (0, -R).
Taking the limit as R = -0 we obtain

ysax+b = (a.b)
and for point P

P=(0R) =+ (0,+m). .
The vertices of the convex hull of the points (a;by), i = 1, ..., N augmented with
(0,+0) are the vertices on the bottom part of the convex hull of the points (ai-bt)
(and (0,+n}). This is exactly the characterization given for intersection (or union)
of haif-planes in Section 3.1. We have

Theorem 19: The point / flat duality is a limiting case of inversion
followed by the circle / point duality and a lincar transform.

3.4. Summary

In this chapter we have presenled several importaant transforms and techniques:

- A point / flat duality ==

This maps points to flals and flats to points. Since there
are already a number of algorithms for point problems, this
transform finds greatest use in transforming problems that
are expressed (or expressible) in terms of flats to problems
that involve points. Two of the important properties of the
duality that we described are

(a) it preserves above/belowness between points and flats,
and

(b) it preserves distance between points and flats in the XK
coordinate, and thus preserves incidence.
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- Embedding into a higher dimension --

This gives another degree of freedom to the problem that
allows application of techniques not applicable to the
original problem -- circles can become spheres, lines can
become planes, etc. Since the higher-dimensional object
has a deyree of frecdom that we can choose arbitrarily, the
objectls can be chosen to conforin to an expecially simple
case (all N spheres have a point in common), In most of the
applications of embedding in a higher dimension (in this
thesis) the problem is first expressed in terms of circles
and then embedded into a higher dimension and
re-cxpressed in terms of spheres.

- Inversion --

Inversion is a circular transform; circles map to circles
(where a line is considered to be a circle of infinite radius).
In particular,

(a) a circle that passes through the center of inversion maps
to a line that does not pass through the center of
inversion, and

(b) the interior of a circle that contains the center of inversion
maps to the exlerior of a gircle that contains the center of
inversion.

In three dimensions we have the same relationships
between spheres and planes and in K dimensions between
K-spheres and flats, Inversion is also involutory --
application of it twice yields the original object. The main
use for inversion (in this thesis) is transforming problems
that are expressed (or expressible) in terms of circles or
spheres to problems that involve lines or planes and for
which fast algorithims are known.

In this chapter we have also seen an application of convex hulls in the intersection
of haif-spaces and in the relationship belween inversion, linear transforms, and the

point / flat duality. In later chapters convex hulls will be applied to several other

probhlems that involve a "network" of linear parts.
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4, Consiruclion of Nearest and Farthest Point Diagrams

Geometric transforms arc important tools in the construction of many different
kinds of nearest and farthest point diagrams. These diagrams include (nearest and
farthest point) Voronoi diagrams in Euclidcan and spherical spaces, and the (nearest
and farthesl) cedge diagrams of a convex polygon. Cach of these diagrams is a
tessclation of space into scts of points closest to (or farthest from) the elements
(points or edges) defining the diagram. We will find in each case that it is useful
first to aexpress the problem in torms of a set of circles that define the diagram and
then to embed the problem into a higher-dimensional Euclidean space, which allows
us to use techniques not applicable to the original probiem. In the following sections

we describe these diagrams and algorithms for constructing them,

4.1. Euclidean Voronoi and Delaunay Diagrams

Voronai diagrams (also catlled Thiessen diagrams or Oirichlet tesselations) find
application in cluster analysis [51], construction of contour maps [29], construction
of Euclidean minimal spanning trees [93), crystal growth [4G], and several
interesting problems in gecometry [91]). We can easily show an Q(N log N) time
worst-case lower bound by demonstratling lthat any aigorithm that constructs a
Voronoi diagram can be used to sort [91); the challenge is to construct an
O(N log N) Llime algorillun, Shamos [89] describes an O(Nlog N) time
divide-and-conquer algorithm for construction of the planar Euclidean Voronoi
diagram and | ee and Wong [67] deseribe an O(N Ing N) time algorithm for the | « and

1/2) time

Loy metrics in the plane. Drysdale and Lee [37] present an O(N c(log N)
algorithm for the Voronoi diagram of line segments (and other planar objects), which
they have improved to O(N log? N) time. Kirkpatrick [59] presents an O(N log N) time
algorithin for constructing the Voronoi diagram of N planar line segments. Shamos
[89], Lee and Preparata [GG), Preparata [80], and Lipton and Tarjan [70] have
produced fast algorithms for searching a Voronoi diagram (or any other straight-line

planar graph).

The algorithm for constructlion of a Euclidean Voronoi diagram that we describe

\o
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below [23] is not only a very uscful result in itsclf, but it also serves as an example
of the use of several important algorithmic tools. We use the technique of
embedding into a higher dimension and applying inversion (as in the algorithm for
union of circles) and we aiso use a convex hull algorithm (as in the intersection of

half-spaces).

4.1.1. Definition of Planar Voronoi and Delaunay Disgrams

Let S be a set of N planar points such that no four points are cocircular.14 A
"nearcst point planar Voronoi éliagram of S, as pictured in Figure 4-1, is a polygonal
network of N reqions. For each point P; of S, region R; is the set of all points of the
plane that are closer to point P; than to any of the other N-1 points of S§. Given an
arbitrary point P in the plane, we can thus determine which of the N points of S is
closest to P by determining which of the N regions contains point P. The vertices of
these polyqgonal regions are called Voronoi points and the poiygonal boundaries of
the regions are called Voronoi polygons. If a Voronoi polygon is bounded, then it is
constructed enlirely from edges of the Voronoi diagram. If it is unbounded, then it

includes two rays of the diagram.

Each Voronoi point V of the nearest point diagram is equidistant from the three
points of S that are nearest V. This yields a property of Voronoi diagrams that we
exploit in the algorithm of Section 4.1.3.

A point V is a Voronoi point (of the nearest point Voronoi diagram of S)

iff it is the cenler of a circle that passes through three points of S but

does not contain any of the other N - 3 points of S.
The edges of a Voronoi diagram connect pairs of Voronoi points whose corresponding
circles meet at two common points of S. The rays are determined similarly by one
Voronoi point from the ncarest point diagram and onc from the farthest-point Voronoi

diagram (described helow).

14Sint:c any three noncollincar planar points determine a unique circle, four planar points are cocircular only in
degenerate cases.
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Figurc 4-1: Planar Nearest Paint Voronoi Diagram

)

Figure 4-2: Farthest Point Voronoi Diagram

A farthest point planar Voronoi diagram (Figure 4-2) is also a network of polygonal
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regions, but region R; is the set of all points in the plane that are farther from point
P; than any olher point of §. As for the nearest point diagram, there is a set of
circles that define the Voronoi points for a farthest point diagram.

A point V is a Voronoi point of the farthest point Voronoi diagram iff it is

the center of a circle that passes through three of the points of S and

contains all of the other N - 3 points.
It is important to note that only j.oints that are vertices of the convex hull of the N
points of S have nonemply farthest point regions. This is because each Voronoi
point V of the farthest point diagram must Be equidistant from the three points of S
that are farthest from V. It is not possibie to construct such a Voronoi point from

points of S that are not on the convex hull.

Figure 4-3: Planar Delaunay Diagram

Both the nearest and farthest point Voronoi diagrams have planar straight-line
duals, called Delaunay diagrams. Figure 4-3 illustrates the dual of a nearest point
Voronoi diagram and Figure 4-4 illustrates the dual of a farthest point Voronoi
diagram. Both of thesc dual diagrams form a triangutation of the points of S§. The

vertices of each triangle of the (nearest point) Delaunay diagram (Figure 4-3)
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determine a circle that does not contain any of the other N - 3 points of S. Similarly,
the vertices of each trianglc of the dual of the farthest point Voronoi diagram

(Figure 4-4) dctermine a circle that contains all of the other N - 3 points of S.
@ (&),
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ﬁigurc 4-4: Dual of a Farthest Point Voronoi Diagram

Since the nearest and farthest point Voronoi diagrams and their duals are planar
graphs, the number of Voronei points is at most 2N - 4 and the number of edges is at
most 3N - 6 for N > 2 [50]. Shamos [89, 91] and Shamos and Hoey [93] give more

information on Voronoi and Delaunay diagrams.

4.1.2. Representation of Veronoi and Delaunay Diagrams

The representation of Voronoi and Delaunay diagrams should enable us to access
conveniently all of the proximily information stored in the diagrams. This does not
require an exotic data structure -- we can accomplish it with a well-chosen set of
arrays. Since the rays of hoth the ncarest and farthest point Voronoi diagrams are

determined by one nearast Voronoi point and onc farthest Voronoi point, it is easiest

for us to desacribe a representation for hoth the nearest and farthest paint diagrams
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simultaneously. One such representaltion is the five-tuple
(8, V, E, StoE, EPLr),

where

S{,1] is the X coordinate and S[1,2] is the Y coordinate of point P; of
S,

V[I,1] is the X coordinale, V[1,2] is the Y coordinate of the Ith Voronoi
point and V[1,3] is a one bit flag lthat distinguisites the Voronoi points
of the ncarest point diagram from those of the farthest point diagram,

E[i,1] and E[1,2] point to the two Varonoi points of V that determine
edge i. Note that for a ray one point will be from the nearest point
diagram and one will be from the farthest point diagram. Furthermore,
we store the edges sorted counterclockwise to make it convenient to
E determine the Vuronoi polygons associated with each point J of S§. The

first few cdges of E define the edges of the nearrst (and farthest)
Voronoi polygons of point 1 of §, the succeeding edges of E define the
Voronoi polygon(s) for point 2 of S, and so on.

EPtr[1,1] points to the first edge in array E of the nearest point Voronoi
polygon for point | of S, Similarly, EPtr[1,2] points to the first edge in
array E of the farthest point Voronoi polygon for point | of S (if it
exists).

VtoS[1,1], VtoS[1,2], and VteS[1,3] point to the three points of S that
determine Voronoi point 1.

The representation for the dual nearest and farthest point diagrams is equivalent to

the representation for the nearest and farthest point Voronoi diagrams.

4.1.3. Planar Voronoi Diagram Algorilhm

We here combine the tools of the previous sections to produce an O(N log N) time
algorithm for constructing a Voronoi diagram of a set S of N planar points. The
algorithm takes advantage of the fact that the Voronoi points of the nearest point
diagram can be represented by a set of circles that each (i) pass through three of
the N points of S, and (ii) do not contain any of these N paints in the interior. As
suggested in Section 3.4, when we have a problem that is expressed in terms of

circles, it may he profitable to try to apply inversion to obtain an equivalent problem
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that involves linear components rather than circular components. ln this case (as
for the union of disks in Section 3.2) we must first embed the planar problem into
three dimensions and express the new problem in terms of spheres before we can
profitably apply inversion. This is because inversion transforms circular (or
spherical) components into linecar components only if the circle (or sphere) passes
through the center of inversion. We need the extra degree of freedom that we
obtain by embedding in a higher diiuension to satlisfy this condilion. The linear
(component) prnblem that we obtain turns cut to be simplie: construct the convex
hull of N 'lremsx’ormud points.  Furthermore, we can also obtain the farthest point

diagram from the same convex huil.
Algorithm far Construction of a Planar Voronoi Diagram

1.Llel S be a set of N planar poinls located in the xy plane of
%Igee-space, Pick a point P in threce-space that is not in the xy plane

.

2. Choose any radius of inversion R > 0 and then invert the N points of S
with respect to point P and radius R. (Section 3.2.3 describes
inversion.) Call this new set of N points S'.

3. Construct the convex hull of the points in §' in O(N log N) time (by the
~algorithm of Preparata and llong [€3]). All N of the points of S’ will be
on the convex hull because inversion about P maps alt paints of the xy
planc to a sphare with P at the apex. (Sce Figure 4-5.) Let f be the
number of faces on the convex hull and let the edge (if any) joining
taces F; and Fj be denoted Eij-

4. Each of the f faces F; of the convex hull determines a plane in
threc-space. Invert these { planes (with respect to center of

wAIMJgh. mathematieally, any point P outside the »y plane vall work, we may encounter excessive round-off
error in 3 computer if P is badly chosen. We veant 1o chodse x and y coordinates that (approximately) center P
over the convev hull of the N pants and choose the & coordinate 3o that it iz not too close to the xy plane (which
clusters the wansformed ponls around P) ard also not too far away from the xy plane (which makes all of the

transformed powls appro-imately coplanar). If Zmax' “min' Ymaxs 9 Yo e the max and min x and y

coordinates among all of the N planar points then det Poow (xp o + a0 3/2, Pos(yp . + v, .)/2, and

P, smar( (n =4 ) (Yo =Yo.a) )/ 4. Since we can find easiy » x_. ; ;
2 max”“min’ Y "Youn maxe X and w... in O(N) time
wWe can choote a good pont P O(N) time. fmin! “max i .
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inversion P and radius N) to obtlain f spheres that intersect the xy
plane in f circles. The centers of these circles are the Voronoi points
Vi. To diatinguish nearest and farthest Voronoi points we perform the
following simple test;

The plane of face F; delermines two half-spaces, one
that contains the enlire convex hull and one that contains
none of it. Let half-space H; be the one that contains the
convex hull. if Il; contains point P then V; is a Voronoi point
of the nearest point Voronci diagram. Otherwise, V; is a
Voronoi point of the farthest point diagram.

5. We obtain the Voronoi points V; from the faces Fi of the convex hull,
but to construct the remainder of the Voronoi diagram we must
examine the adges. Cach edge EU of the convex hull corresponds to a
segment of the nearest point diagram, a scgment of the farlhest point
diagram, or a ray (for both diagrams). To determine for an edge E;;

. 1
which of these three possibiiities is truc we use the following rules:

- If V; and Vj are both nearest Voronni points, then there is a iine
segment connecting V; and V; in the nearest point diagram.

-1t V; and Vj are hoth farthest Voronoi points, then there is a line

segment connecting V; and Vj in the farthest point diagram.

- If V; is a closest Voronoi point and Vj is a farthest Voronoi point,
then V; and Vj determine a ray in both the nearest and farthest
point Voronoi diagrams. The points V; and Vj determine a line,
and the desired ray for the nearest point Voronoi diagram is the
part of that line that starts atl point V; and does not include
poinl V:.. The ray siarting at point VJ- that does not include point
V; is for the farthest point Voronoi diagram,

Although it is clear that the above algorithm requires only O(N log N) time and O(N)
storage, it is nol immediately obvious that it actually constructs the nearest (or

farthes!) point Voronoi diagram. We must explain (1) why the centers of the circles

(gencrated in Step 4 above) are the Voronai points and (2) why the connection
rules (Step 5) for Voronoi points work. We will now show this for the case of the

nearest point diagram. The argument for the farthest point diagram is similar,

above algorithm are the Voronol points.
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Figure 4-5: Planar Voronoi diagram and corresponding convex hull,

&ogf;- The proof is in two parts: (1) all of the points generated in Step
4 are Voronoi points, and (2) all of the Voronoi points are generated in
Step 4. To prove that the circles generated in Step 4 are centered at
the Voronoi points we must show that (a) these circles each pass through
three of the N points of § and (b) do not contain any of the other N - 3
points in the interior (Section 4.1.1). Part (a) follows from the fact that
inversion is invalutary (Section 3.2.3). We prove part (b) by
contradiction. Assume that the circle passing through points A, B, and C
of S contains another point Q € S in its interior. This places point Q inside
the sphere determined by noints A, 8, C, and P. When we invert about
- point P, the point Q' is separated from point P by the plane determined by
points A’, B', and C'. Since the plane A'B'C' does not determine a
half-space that contains point P and also contains all of the other N=- 3
points of §' it cannot he & face of the convex hull that determines a
Voronoi point of the nearest point Voronoi diagram.

To prove that Step 4 generates all of the Voronoi points we simply use
the reverse argument. If V; is a Voronoi point then the circle for V;
transforms (by inversion) to a face of the convex hull of S'. Let A, 8, and
C be the points of S that dectermine Voronoi point V. The points A’, 8, and
C' of §' determine a plane that containg all of the points of S’ because all
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N - 3 other points of S lie outside the circle determined by pcints A, B,

and C. O

Theorem 21: Step 5 of the algorithm correctly obtains the edges of the
Voronoi diagrant.

Prool: The proof is in two parts: (1) all of the edges gencrated by Step

5 are edges of lhe diagram and (2) all edges of the diagram are
generated by Step 5. An edge Eij of the convex hull that separates
(nearest point) faces Fi and F; maps to a line scgment between Voronoi
points Vi and V.. But the circles correspanding to Voronoi points V; and Vj
meet at two of the N points of S because the corresponding faces F; and

F: share an edge Fij' This is exactly the characterization given for edges

of the Voronoi diagram in Section 4.1.1. Similarly, the rays are determined

~ by edges Eij where V; is a nearest Voronoi point and Vj is a farthest
Voronoi point (or vice-versa). In this case, too, the circles corresponding

to V; and Vj meet at two of the N points of S. O

Since the Voronoi points and edges (and rays) connecting the Voronoi points are
correctly generated by the above algorithm, we have just proven

Theorem 22: The algorithm constructs the Voronoi diagram in O(N log N)
time.

4.1.4. Fast Expected-Time Algorithms

The maost expensive part of the algorithm for construction of a Voronoi diagram is
the construction of the convex hull. If the convex hull can be constructed in fast
expecte«;i time, then the Voronoi diagram can be constructed in fast expected-time.
The O(N) expected-time algorithms of Bentley and Shamos [16], Eddy [39], or Floyd
[40] do not apply because their resuits depend on a sublinear expected number of
points on the convex hull, and for the Voronoi diagram algarithm there are always N

vertices on the convex hull.

Bentley, Weide, and Yao [18], on the other hand, describe how a planar Voronci

diagram can be constructed in linear expected-time. The only condition is that the

probability density of the underlying distribution must be bounded above and below

by (nonzero) constants. The algorithm does not make use of inversion. Instead, it

TP A 2 1L ) - . . e
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applies an extension of Weide’'s {99] technique for an O(N) expected-time sort to

the planar Voronoi diagram problem.

4.1.5. Higher Dimensions

The K-dimensional Voronoi diagram algorithm is an extension of the planar
algorithm. We first embed the N K-dimensiona! points of S in K+1-space and then
invert them to N K+1-dimensional points S'. We then construct the convex hull of S'
and obtain the Voronoi diagram by transiorming the parts of the convex hull back to
K-space. To transform back to K-space we first invert each hyperface of the
convex hull lo obtain a set of K+1-spheres whose intersection with K-space is a set
of K-spheres. These K-spheres each pass tirough K+1 points of § and are
centered at the Voronoi points. We obtaiq the other components aqf the
K-dimensional Voronoi diagram by connection rules similar to those in Step 5 of the
aigorithm in Section 4.1'.3. For example, if the K-sphere for Voronoi point V| passes
through K of the K+1 paints determining the K-sphere for Voronoi point Vj, then we
draw a one-dimensional edge between V; and Vj. If the spheres for a set of three or
more Veoronoi points share K-1 paints of S, then we draw a two-dimensional edge
between the Voronoi points of that set. (A two-dimensional edge between L points
is a convex polygon with L vertices.) The rules for three and higher dimensional
edges are similar. The time complexity of the K-dimensional Voronoi diagram
algorithm is dominated by the time to construct a K+1-dimensional convex hull of N

points. (See Seclion 1.1.1 for references to several convex hull algorithms.)

4.2. Spherical Nearest and Farthest Peoint Voronoi Diagrams

Voronoi diagrams are useful for solving several closest or farthest point
geographic problems. If, however, the area covered by the points is largé, then we
must take the curvature of the earth into consideration. The most obvious
approximation to use for the earth is a sphere. Nearest and farthest point Voronoi
diagrams on a sphere are defined in a manner analogous to their planar counterparts

and the algorithms for constructing them provide an interesting comparison with
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those for the planar case. For example, we obtain the farthest point Voronoi
diagram of a set of N spherical points S by simply applying a nearest point algorithm
to a set S' of N points diamctrically opposite the points of S. There are two
different methods for constructing these diagrams in O(N log N) time. One involves
an intersection oi haif-snaces and the other obtains the dual of the Vorcnoi diagram
from the convex hull of the spherical points. We will describe only the second

algorithm because it is simpler.

We take advantage of the fact that the spherical Voronoi diagram, as well as the
planar Voronoi diagram, can be expressed in terms of a set of circles: the Voronoi
points are the centers of the circles (on the sphere) that (i) pass through three of
the N spherical points, and (ii) do not contain any of the other N - 3 spherical points.
As before, pairs of circles that share two of the N points determine the edges of the
diagram. We wottld like to express this problem in terms of linear components rather

than circular components.

One approach is to construct a spherical analog of the formula for the planar
Voronoi diagram algorithm: embed to a four-dimensional sphere, apply (spherical)
inversion (with respect to a suitable point P of the four-sphere), and construct the
(spherical) convex hull of the transformed points. Although this approach can
actually be ma.de to work, it does not give us a problem that involves linear
components, A belter approach is to embad the spherical Voronoi diagram problem
(which is a spherical two-space problem) into Euclidean three-space. The circles
that define the spherical Voronoi diagram determine the planes that bound the faces
of the (Euclidean three-dimensional) convex huil of the N points. This convex hull
can be converted readily into the dual of the spherical Voronoi diagram -- the
spherical Delaunay diagram -- and can be constructed i O(N log N) time. Given the

dual, the Voranoi diagram can be prodiced in only O{N) additional time.
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Algorithm for Spherical Voronoi Diagram

1. Let S be a sct of N > 3 points on the surface of a sphere such that no
four points are co-circular. Construct the convex hull of the points of
§ (treating them as N paints in Euclidean three-space) in O(N log N)
time by the algorithm of Preparata and Hong [83].

2. For each face [ of the convex hull there is a corresponding Voronoi
point V; on the surface of the sphere that is equidistant from the
vertices of face F. (Actuaily there are two such points -- V; and the
point diametrically opposite V. Choose the point that is closest to the
vertices of face F;.)

3. For each pair of faces I and Fj that share an edge E” construct an
arc of a great circle that connects points V; and V.. Since there are
only O(N) faces and edges in the convex hull we can do this in O(N)
time.

The diagram thal the above algorithm constructs is the spherical nearest point
Voronoi diagram because each Voronoi point V; corresponding to face F; is not only
equidistant from the vertices of face F; but is also closer to these three points than
the other N-3 points of set S. As in the case of the planar Vorenci diagram, we have

a set of circles that ensure the properties of the Voronoi diagram.
4.3. Necarcst and Farthest Edge Diagrams

Drysdale and [ ee [37} desaribe the construction of Varonoi diagrams of line
segments (and other geometrical objects) in O(N c{log N time (which they later
improved to O(N (log N)2) time) and Kirkpatrick [58] has reduced this time to
O(N log N). A sperial case of this problem is the nearest (respectively farthest)
edge diagram for a convex N-gon. This diagram is a tesselation of the plane into N
polygonal rcgioné such that cach region i is the set of all points nearest to
(respectively farthest from) edge | of the N-gon. Figure 4-8 illustrates a nearest

edge diagram,

The problem of constructing a necarest edge diagram is presented by Shamos
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[89] as probiem POLY in his workbook. One interesting application is that once we
have construcled the ncarest cdge diagram, we can solve the problem of
constructing the greatest incircle of a convex polygon (problem POL1G) in O(N) time.
Both Preparata and Lee describe O(N log M) time solutions to this problem that are
not based on gcometric transforms {77, 79]. (They call this problem “"Medial axis of
a convex polygon.”) In this section we describe an O(N log N) time solution that is
based on the simple geometric transforms of (1) embeddmng in a higher dimension

and (2) orthographic projection.

One of the main differences between the nearest-edge diagram and the others
described in this chapter is that the clemants defining the diagram are edges rather
than points. We can, however, still cxpreass it in terms of circles; since each vertex
V of the diagram is equidistant from the tlwee nearest edges of the N-gon, V is the
center of a circle that is tangenl to three edges (but does not intersect or contain
any of the other N - 3 edges). This suggasts that we might try to apply the formula
that we used for the Euclidean planar Voronoi diagram of N points; embed in
Euclidean three-space, invert the edges with respect to a point P that is not in the
xy plane (producing a connected set of circular arcs), and construct the convex hull
of the transformed elements. This would work well if we had a fast algorithm for
constructing the convex hull of a set of (connected) circular arcs in three-space.16

There is, however, another way to embed this problem in three-space that produces

a three-dimensional probiem thal involves only lincar components.

The N circular arcs all determine circles that pass through point P, For any one of
these N circles C; there is an infinite number of spheres that pass through (all of the
points of) C;. We can thus represent the convex N-gon (in the xy plane) as a set of
N spheres (in three-space) cach of which passas through point P and still has one

deqgree of freedom, llow should the spheres be chosen?

P e e e of st oan dlgenthe, and its aaplicatict to Voronoi dagrams of gencral sets of line

Lo c't 3 wncecrene fur the reader,
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Figurc 4-3: Nearest edye diagram of a convex polygon,

Since inversion maps spheres to planes and the interior of the spheres to
haif-spaces, we can reprasent the nearest edge diagram by an intersecd'on ot
half-spaces. The problem of choosing the spheres now becomes a problem of
choosing the haif-spaces. For each haif-space the degree of freedom is the angle
that its boundary makes with the xy plane. Since the edges of the nearest edge
diagram fe on the anguiar bisectors aof adjacent sides of the N-gon we choose
haif-spaces whose boundaries meed directly above these angular bisectors. This
gives us the following algorithm: ‘
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Algarithm for Ncarcst (Respectively Farthest) Cdge Diagram for a Convex
Polygon

input: N == number of vertices in the convex polygon. X[1:N], Y[1:N] == x and ¥y
coordinates of verlices of the N-gon (counterclockwise order).
Qutput: Nearest Edge Diagram The represcntation is similar to the representation for

an intersectlion of haif-spaces (Section 3.1).

Time: O(N log N), Space: Q(N).

1. Let Lhe convex polygon lie in the xy plane of 3=space. For each edge
e; of the polygon construct the unique plane p; that (a) contains that
edge, (b) makes a 45 degree angle wilh the xy plane, and (c) lies
above the polygon (rather than below it). For a nearest edge diagram,
let hy be the half-space that lies below plane p;. For a farthest edge
diagram, let h; lie above plane p;.

2. Intersect the N half-spaces h; in O(N log M) time (Section 3.1).

3. Project the intersection to the xy plane. (This amounts to throwing out
the z coordinates of the vertices of the intersection.)

The above algorithm does not make any distance meas:rements to construct the
nearest (or farthest) edge diagram. Instead, it relies on the symmetry induced in
Step 1 by constructing all planes p; at the same angle (45 degrees) from the xy
plane. We can generalize this to weighted distances w; from the edges by simply

letting the slopes of the planes p; be set to the weights w;.

4.4. Summary

We have described three types of diagrams, planar and spherical Voronoi
diagrams of sets of points, and (nearest and farthest) edge diagrams for a convex
polygon. Since each of these problems involved Euclidean distance between the
elements defining the diagram, we found it useful to express each problem in terms
of circles. We then embedded the problem in a higher dimension and, when

necessary, expressed it in terms of (carefully chosen) spheres and applied
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inversion to obtain an aquivalent problem expressead in terms of linear components..,

For the planar Voronoi  diagram  problem we embedded the plane into
three-dimensions and appliad inversion to obtain a convex hull problem. The circles
defining. the planar Voronoi diagram are cenlered at the Voronoi points and each
pass through three of the N points but do not contain any of the other N = 3 paints in
their interiors. These circles become spheres when embedded into thrae dimensions

and, when inverted, become the planes that bound the faces of the convex hull.

We were able to solve the spherical Voronoi diagram problem directly as a convex
hull problem. This is because the circles defining the diagram pass through three of
the N spherical points but do not contain any of the other N - 3 points. When the
spherical Voronoi diagram problcn! (which is a spherical two-space problem) is
embedded inta Euclidean three-space, these circles become the planes that bound

the convex hull of the N points.

We constructed the nearest (respectively farthest) edge diagram of a convex
polyﬁon by embedding inlo three-space and intersecting half-spaces. Each of the
circles that define the nearest edge diagram is tangent to three of the sides of the
convex N-gon and does not conlain any part of the other N - 3 sides in its interior.
By embedding inta Euclidean three-space, applying inversion, redefining the problem
in terms of spheres, and then applying inversion again we obtain a problem of
!nteisectlng half-spaces. But, as we saw in Section 3.1, the intersection of

half-spaces is solved by constructing the convex hull of a set of points.

. In the next chapter we will {ind even more uses for convex hulls.
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S. Searching Tessclations

In this chapler we demonstrate how a scarch of a tesselation (Section 1.1.4)
arises in both linear programming and computing the diameter of a set of points.
Both of lhese problems invite the use of an orthographic projection to reduce a
K=-dimensional préblem to a K-1-dimensional preblem and furthermore provide
interesling applications of the point / flat duality transtorm (Section 3.1.3.3). The
diameter of a set of points also provides another application of the convex hull of a

set of points.

8.1. Lincar Programming

Linear programming is an important technique for optimizing a linear function
subject to a set of several linear constraints. If there are K variables and N
constraints, we may interpret each constraint as a half-space in K-space and the
feasible region satisfying all of the coastraints as the polytope that is the
intersection of N K-dimensional haif-spaces. One of the vertices of the resulting
polytope is an optimal solution for the linear program. The linear programming

probiem is to find this vertex as quickly as possible.

The standard mathod of sclving lincar programming problems is the simplex method
(and its variants) [28]. In the worst case, however, the simplex method will require
exponenlial time [60, 55]. Kclly [58]) has shown that for a model of linear
programming with N relevant constrairils in two variables chosen independently from
a given distribution, the expected number of iterations is O(N). Since cach iteration
costs, in this case, O(N) time, the expected time for linear programming in his
two-dimensional model is O(N2). In general, however, the expected-time of the
simplex method has not been adequately analyzed, although empirical results

indicate that it may be bounded above by a low degree polynomial in K and N [38].

There are aiternalives to the simplex method. Khachian [44] has produced an
algorithm for solving lincar programming with integral coefficients that costs only
polynomial time (in the size of Uie input) in the worst case. His method, however,

depends strangly on the fact that the coefficients are integers. Another appreoach
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is to intersect the N K-dimensional half-spaces o construct explicitly the feasible
region and then evaluate the objective function at cach vertex. ForK=2orK =3
variables we may construct the interscction and solve the linear programming
y ! problem in O(N log N) worst case time and {when the expected number of
nonredundant conatraints is O(HP) for some p < 1) O(N) expected-time
[94, 106, 84] This is, in the worst case, betler than the simplex method, which may
take 0(N2) time in these cases. It is not, however, generally considered advisable
to construct explicilly the enlire feasible region when we need only the vertex
corresponding to the solution. The simpiex method certainly avoids that problem.

We now describe an approach toward a better solution.

~

Figurc 5-1: Transform of LP probiem to vertical line and convex hull.

Dantzig [29] describes an alternate interpretation of the simplex method that is
based on the point / flat dualily transform. The polytope obtained by intersecting
the N K-dimensional half-spaces transforms to the convex hull of N points in
K-space and the (linear) objectlive fundion transforms to a vertical line (in the K
coordinate) in K-space. (See Figure §-1.) The linear programming problem itsel!f is
transformed to the problem of determining which face of the convex hull this vertical
line intersects. When we orthographically project the convex hull to a tesselation

and the verlical line 1o a point in K-1-space, we obtain a problem of locating a point

In a tesselalion. (See Figure 5-2 for an illustration of the two-dimensional case.)
This does not immediately lead to a (provably) faster linear programming algorithm

than the simplex method, but it does provide another way to approach the linear
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programming problem.

—l O ) Oy —O Lt

Figurc 5-2: Transform of vertical line and convex hull to a point and a tesselation.

8§.2. Diameter of a Sct of Points

The diametcr of a set of points is the distance between the two farthest points.
This quantity often.arises in problems of cluster analysis [51] because a set of
points that are all near each other makes a betler cluster than a set of points that
are spread far apart. The straightforward way to determine the diameter of N
points is to cémpute all e(Nz) interpoint distances and return the maximum.
Depending on the metric and the number of dimensions, however, there may be much

faster algorithms,

~ For K = 1 dimension all N points lle on a line and the diameter is the distance
between the points with maximum and minimum coordinate, which can easily be found
in O(N) time. {In fact, [3N/2 - 2] comparisons are necessary and sufficient
[76]). For two or more dimensions the choice of metric is important. The Lq or Ly,
diameter of N points in K dinensions can be easily computed in 0(2KN) or O(KN) time,

res.r:e<:tiwzly,1 7 but the Euclidean case may be more difficult. For two dimensions

171’!\0 diameter of 3 set is determined by the most evtreme ne-nu in e.\ch of the dircctions determined by the
faces of the st "sphere”, Since the unit sohere for tho L metric has 28 faces, and the unit sphere for tho Loo
metric has 2K faces, we can find the exireme ponts in O\.’."M) and O(KN) time, respectively,
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the best known Cuclidean diameter algurithms run in worst-case time O(N log N)
[89, 91]. For three dimensions Yao [102] has produced an O(N1-8) time algorithm
and for K dimensions O(N2 = “(K)) time, where o« (K) = 2-(K+1),

We will present an O((N + K) log M) tini: algorithm for the three-dimensional case,
where K is the number of pairs of antipodal vertices on the convex hull. To achieve
this time we apply a point / flat duality combined with orthographic projection to the
components of the convex hull of the set of N points to obtain a problem of locating
points in an outerplanar straight-line graph. In Appendix Il we describe a
relationship between the Euclidean diameler and an empty-intersection problem that
may lead to an Q(Nlog N) time lower bound for the diameter problem. In the

following sections we present O(N log N) time two-dimensional Euclidean diameter

‘algorithms. the O((N + K) log N) time three-dimensional algorithm, and then discuss

fast expected-time algorithms, approximation algorithms, higher dimensions,

applications, and some unsolved problems,

§.2.1. Diamcicr in Two Dimensions

Shamos [91] describes an O(N log N) time algorith for computing the diameter of
N points in the plane. The algorithm that we present is essentially equivalent to his,
but it is expressed so that it generalizes to a fasl threc-dimensional algorithm., We
first present a theorem that reduces our scarch for the diametrical pair of points to
the convex hull.

Theorem 23: (Hocking and foung [52], p. 207) The Euclidean diameter
of a set of points S is determined by two points on the convex hull of S.

it all N of the points of S are on lhe convex hull, then we have not reduced the
size of the problem. We have, however, simplified it by reducing the problem of
computing the diaineler of a set of points lo the probiem of computing the diameter

of a convex polygon. For our new problem we have the following theorem:

Theorezm 24: (Yaglom and Boilyanskii [106], p. 9) The diameter of a
convex figure is the maximum distance helween parailel lines of support
of this figure.
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Figure §-3: Convex hull and parallel lines of support.

In Figure 5-3 we illustrate two (parallel) lines of support Ly and Lp. In general, a
line of support passes through {at least) one houndary point of a figure and lies
entirely on one side of that figure. Pairs of points (of the figure) on opposite
parallel lines of support are called antipodal points. In Figure 5-3 pointé A and E and
points B and E are antipodal. We are interested in the antipodal pairs of vertices
determined by the lines of support for the convex hull of S because one of these
pairs determines the diameter of S. Our next theorem gives a bound on the number
of pairs that we will have to examine.

Theorem 25: For a convex poiygon of N vertices there are only O(N)
antipodal pairs of vertices.

Proof: As we rotate parallel lines of support L and M about the convex
polygon, the antipodal vertices determined by L and M change only when
either L or M becomes coincident with onc of the N sides. We may thus
generate all of the pairs of antipodal pairs of vertices by recording all
antipodal pairs when eititnr L or M contains a side of the polygon. If line L
contains a side, then it passes through two vertices and similarly, its line
of support M will pass through at mast two vertices, (In fact, only when
the polygon has parallel sides can both L and M simultaneously pass
through two vertices.) There arc thercfore at most four antipodal pairs of
vertices generated each time a line of support passes through a side of
the polygon. Since there are only N sides of the polygon. there are only
O(N) anlipodal pairs of verlices. O

i
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We now have ecnough information to oulline our two-dimensional diameter

3 algorithm:
QOutline of Two-Dimensional Diamcter Algorithm
1. Construct the convex hull of the N planar points:

2. Generate the O(N) antipodal pairs of vertices from the lines of support
of the convex hull.

4 : 3. Compare the distances between each pair of antipodal vertices and
© report the maximum as the diameter,
We can construct the convex hull (Step 1) in O(N log N) time [48] and easily
compare. the distances between antipodal pairs of vertices (Step 3) in only O(N)
time. We thus have only to determine how fast we can generate the Q(N) pairs of

antipodal verlices (Step 2). In the remainder of this section we show two

algorithms for generating them in O(N) time, making the total time for our diameter

algorithm O(N log N).

Shamos [81] describes in detail how to generate the O(N) pairs of antipodal
vertices of a convex polygon in O(N) time. After finding the first pair he generates
the olher pairs in a .counlerclockv,'ise scan aboul the polygon, maintaining parallel
lines of support at all times. For example, in Figure 5-3 line L1 passes through
vertices A and B and parallel line of support Ly passes through vertex E. We can
rotate Ly counterclockwise about vertex B and Ly about vertex E until either L4
contains side BC or L conlains side CF. We determine which of the two possibilities
occurs first by comparing the slopes of sides EF and BC. In this cuse line Ly will
meet side i;F before line Ly meels BC because the slope of EF is less than the slope
of BC. This means that vertices B8 and F are antipodal and that we will begin

rotating Lo aboutl vertex F rather than €. We continue this procedure untit the

parallel lines of support L4 and L2 have traversed the entire convex polygon {and

have thus generated all of the antipodal pairs of vertices).
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We can modify Shamos' algorithm so that it generalizes easily to the
three-dimensional case. The important {eature thal we extract from his algorithm is
that when we perform the O(N) time scan around the convex huil, the c.;mly
3 comparisons that we musl make are comparisons of the slopes of the sides of the
~convex hull. That is, the x and y coordinates of the vertices do not matter since we

comparc only the slopes of the sides of the polygon. This insight leads to a

one-dimensional interpretation of the (orlginally) two-dimensional problem.

hoB 8 EF G H I A
UPPER ¢
F 1mf[ é[ ]yI\ Iil UPPER
e > < ] L] L] * [ ) >
A E a b ¢ d LOWER
A I
LOWER B B¢ D A B C D €

Figure 5-4: Transform of a convex huli to a line,

We illustrate the transform in Figure 5-4. The first step is to divide the convex

polygon into two parts, UPPER and LOWER. This ensures that when one of two
, parallel lines of support meets the polygon at ¢n UPPER side, the other line of
: support meecls it a LOWLR side. We may define the transform of an UPPER side of
the convex hull as Lhe slope of the UPPER line of support that contains it. We may
also transform an UPPCR vertex V to the set of slopes of all UPPER lines of support
that pass through V. The transform for LOWER sides and vertices is similar.
Furthermore, since we consider the lefimost and rightmost vertices (A and E in
Figure 5-1) to lie in both the UPPER and LOWER sets, they each have both an UPPER

and a LOWLCR transform. We now describe the transform algebraically.

The transform imaps the UPPER set of sides of the convex hull to a set of points

on the line and the LOWFER set of sides to another set of points on the line. The ' J

mapping is simply a point / flat duality followed by an orthographic projection
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y=mx+h = (mbh) = (m) (14)
where "y = mx + b" is the line determined by a side of the convex hull and "(m}* is
the one-dimensional point to which tha side maps. The transform of a vertex V of
the convex hull is an interval on-the line. If Vis the intersection of two UPPER (or
two LOWER) sides that determine the lines y = myx + by and y = mpx + b, then the
transform of V is the interval belween (one-dimensional) points (m1) and (mp). This
is because ali UPPER (or LOWER) lines of support at V must have a slope between
(m1) and (‘"2); If Vis a leitmost or righlmost paint, then the set of slopes of the
UPPER (or LOWER) lines aof support at V is an infinite interval on the line. For
example, in Figure 5-4 the UPPLCR transiorm of vertex £ is the interval (-®,e] and
the LOWER transform of vertex E is the interval [d,on), where "e" is the slope of

side e and "d" is the slope of side d.

The transfarm gives us all the informalion we need to generate the O(N) pairs of
antipodal verlices. For example, in Figure 5-4, 17 L4 is the line determined by side a,
then the parallel line of support L passes through the vertex F. Equivalently, the
transform maps side a to point a and vertex F to interval F such that point a lies
inside the interval F. Since side a is bounded by vertices A and B, we have the
antipodal pairs of verlices (AF) and (BF). We can gencrate all O(N) pairs of
antipodal verlices by'fin(ling which intervals contain the N points a, b, ¢, etc.

Theorem 26G: Given a convex polygon of N sides, we can generate the

OCN) pairs of antipodal vertices in O(N) time.

Proof: When we generate the UPPER and LOWER sets of points on the
line (Equation 14), they will be in sorted order because the slopes of the
sides of the convex hull are alrcady sorted. We can thus easily scan the
two sets to determine which interval each point lies in and ultimately
generale Lhe O(N) antipodal pairs of vertices in O(N) time. O

In summary, we have

Theorem 27: We can compute the diameter of N planar pcints in
O(N log N) worsi-case time.

Proof: We first construct the convex hull in O(N log N) {[48]) time and
then compare the O(N) antipodal pairs of vertices in O(N) time. To
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generate the antipodal puirs we may use either the scan around the

convex hull of Shaios [01] or first transform the sides of the convex hull
to points on a line and then perform an equivalent scan of those points.

a

5.2.2. Diameter in Three Dimensions

Many features of our algarithm for the diameter of a two-dimensional set of points
extend Lo Uwee dimensions. We first construct the convex hull of the N points in
O(N log N) time (by the n'lgorithm of Preparata and Hong [83]) to enable us to solve
the diametler of the sel of poinls as the diamcter of a donvex hull. To find the
diameter of the convex hull we then generate the set of antipodal pairs of vertices,
one pair of which determines the diameler. In lhis section we show how to generate
the K pairs of antipodal vertices in O((N + K) log N) time and that we can thereby

compule the diameler of N poinls in three-space in O((N + K) log N) time.

In the plane we used the concept of line of support to generate the O(N) pairs of

anlipodal vertices. In three dimensions the corresponding concept is plane of

5 support. For ecach face of the convex hull, say face PQR, the plane of suppor.
passes through a vertex W of the convex hull. This generates the antipodal pairs
' of vertices (P,W), (Q.W), and (R,W). Although the convex hull has only O(N) faces, in
the worst case there may still be Q(N?-) pairs of antipodal vertices.18  when the

number of pairs K is less than Q(Nz). though, it is not obvious how to generate them

in less than O(N?) time.

Our first step toward generating tlic antipodal vertices is to divide the faces of

the convex hull into the two sets UPPER and LOWER. (The plane that contains an

UPPECR face lies above the conivex hull and the plane that contains a LOWER face

lies below the convex hull.) Tlis division has the property that if a plane L contains

a face of the UPPER set, then the plance of support M that is parallel to L passes

]
18_Fnr avamnia thare are Q(H=) antiondal naies i MI2 af tha noints aro of the farm (0, a0 Q  sn 9.) and NI2
of cvampie, there are D{RT) antipedar pairee oI RJQ 07 the ponty are of the Torm (Q, 208 0, an T ) 2ng

of the paints are of thn form (cos 9'. 0, -smn G|) wihore 9. s TT/2(Y #/N).
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through a vertex of the LOWER set. Similarly, a face of the LOWER set determines a
parallel plane of supporl that passes lhrough a veriex of the UFPER set. (We
consider the vertices on the houndary of the UPPER and LOWER sets to belong to
both sets.) We next show how we can transforin the UPPER and LOWER sets to find

the antipodal vertlices quickly.

5.2.2.1. Transform in Thrce Dimensions

To generate the O(N) pairs of antipodal vertices we use an extension of the
geomelric transform that we used for the two-dimensional problem. In two
dimensions our choice of transform was motivated by the fact that the search for
lines of support involves only comparisons of the slopes of the sides of the convex
hull.  Similarly, in three dimensions, the search for planes of support involves
comparisons of the slopes of the faces of the convex hull. Our transform for the
faces, edges, and vertices of the convex hull ail follow the same schema:

The UPPER transform of a component of the convex huil is the set of
slope-pairs of all UPPER planes of support that contain it. Similarly, the
LOWER transform is the set of siope-pairs of all LOWER planes of support
that contain it.

‘Since only one plane of support contains a face of the convex hull, a face maps to
one point. An edge is contained by a set of planes of support with one degree of
freedom so an edge maps to an interval of a line. Finally, a vertex of the convex
hull is contained by a set of planes of support with two degrees of freedom so a
vertex maps to a planar region. We now present algebraic descriptions of the

transforms of faces, edges, and vertices of the convex hull.
Transform of a Face

Let z = ax + by + ¢ be the plane datermined by a face FF of the convex hull. The
transform of face F is simply the pair of slopes (a,h), a point in the ab plane. We
may alternately view this transform as a combination of the point / flat duality and
orthographic projection:

zzax+by+c = (abec) = (ab) (15)
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We next describe the transform of an edge and a vertex. Since the UPPER and
- LOWER transforins arc so similar, we present only the UPPER transform for each

case.

- UPPER Transform of an Edge b

Suppose that lwo faces L and M of the convex hull have an UPPER edge E| y in

common. Lat the two planes L and M determined by these faces be written

Z=ax+by+c,and

Z3Fayx + by +Cy. (16)
We can write the line where planes L and M meet in parametric form as 4
i 3IK :
(P.P,P.) + ula b -1}, ué€Reals (17) 3

where P = (Py,Py.P,) is some point in both planes and i, J, and K are unit vectors
parailel to the x, y, and z axes, respactively. Far example, if the line intersects the

Xy=-plane we can choose P as

a_ b, 071 e,
P = (P,‘.PV.P;) z = la, b, 0 eyl
0 01 0

A plane 2z = ax + by + ¢ conlains the line of Equation (17) iff

a b -1
a b -1l =0 and P, = aP, +bP, +c. (18)

Since the transform of E| M s limited to UPPER planes of support that contain E .
we must reslricl the solutions of Equation (18) to an interval defined by the two

points (a, by, ¢) and (apy, by, eyl The transform of edge E_M is the projection of




LT S O 13 £, e 2 O A

i
k) 3
24 December 1979, Geomeltric Transforms PAGE 92 i
4

i an interval of this line to the xy (ab) plane. We summarize our results in the

i

& following theorem: .

o

3

Theorem 28: Let the planes L and M of Equation (16) be determined by
§ two faces of a convex polyhiedron that meet al an UPPER edge E; pg. The
! UPPELR transform of edge [ is the set of points (a,b) on the line

(hM - bL)n - (OM - OL)b = aLbM - aMbL (19)

I that lie in an inlerval determined by the points (a, bL) and ("‘M' bpg). If L

' and M arc both UPPLR ptanes then the interval liecs betweon the two
points. If L is UPPCR bhut M is LOWER then the interval is the ray from
point (a|,b) that does no! include point (agbyy). (Similarly when L is
LOWER and M is UPPPER.)

Proof: The line of Cquation (19) is from Cquation (18). Since the set of
UPPECR planes of support thatl contain edge E is connected, the UPPER
transfarm of edqge F|ais an interval of this line. Since the planes L and
M of Equation (16) contain cdge E 4. the points (n-._.bL) and (aM.bM) must
be on the UPPER transform of cdge E 4, iff planes L and M are UPPER
faces of the convex hull. Furthermore, since the faces L and M are the
extreme limils that a plane of support can be rotated about edge Ep .
point (aL,I»L) mustl be an endpoint of the interval |f plane L is an UPPER
plane of supporl and (aM.l'»M) must be an endpoint of the interval if plane
M is an UPPLR plane of support. From these conditions it follows that if
both L and M are UPPER plancs of support, then the interval must be
between the two paints. I L is an UPPER piane of support but not M,
then the interval is a ray starting from point (aL.bL) that does not contain .

: point (apgbyy). Simitary if L is LOWER and M is UPPER. O
UPPER Transform of a Vertex

Suppose that Il faces meet at a vertax V = (vx.vy.vz) on the UPPER part of the
j convex hull, Number these faces in counterclockwise order so that the edges that
mect at vertex V are Eq,, F23', -+« Fyg. (If vertex V lies on the boundary of the
UPPER and LOWLR parls then include only those cdges in the UPPER part.) Let the
plancs detarminad by the H faces be

Z=ax + by +c; i=1,..,H

If ray r; is the ray that originates at point V and points down edyge Ei‘i+1 then

l’i = (VX’ Vy. VZ) +Uu (ai, 6i' ‘l’i)' uz 0 (20)
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where
T J K a, b, -1
(. B8,%,) = al+8I+yK = |3 b -1 x SGN|a,, b,; =1 (21)
A4y by -1 a42 bya -1

.(Note that the subscripts "i+1" and "i+2" are to be taken modulo H.) The first
determinant in Cquation (21) determines the line that ray r; lies in and the second
determinant determines which of the two possible directions r; should point. We may
now characlerize the set of UPPER planes of support of UPPER vertex V.

Theorem 20: Let V = (vx.vy.v,_) be an UPPER vertex of a convex
polyhedron at which the UPPER rays r; determined by V satisfy Equation
{20). A plane z = ax + by + ¢ is an UPPER plane of support at vertex V iff

V, = aVg+bVy+c (22)
and

%i < aai*bﬁi. is1,..,H ) (23)

Proof;: A plane z = ax + by + ¢ is an UPPER plane of support at vertex V
iff it passes through V and remains above all the rays r;. Equation (22)
requires the plane to pass through V. The plane remains above the H rays
iff
Vz+uy; $ a(Vy+ug) + b(Vy+ug) +c Yu2o. (24)

By subtracting Equation (22) and dividing by u we obtain the inequality
(23). Conversely, if Equations (22) and (23) are satisfied, we easily
derive Cquation (24) by multiplying (23) by u 2 0 and adding to (22). O

For the transform of UPPER vertex V we are interested only in the slopes of the
UPPER planes of support at V, By Theorem 29 we have

Theorem 30: Let V be an UPPER vertex of a convex polyhedron at
which the UPPER rays r; determined by V satisfy Equation (20). The
UPPER transform of V is a convex polygonal region of the ab plane

- determined by the inequalitics

¥i < aaiﬁhﬂi. iz1,..,H

Bt o o T R
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§.2.2.2. Algorithm for Generating Antinodal Vertices

We havé just scen how to transform the faces of a convex polyhedron to points
in the plane, edges lo edges in the plane, and verlices to convex polygonal regions.
Combining these we can transform both the UPPER and LOWER parts of the convex
hull to outerplanar straighl-line graphs in the plane, as illustraled in Figure 5-5. We
now present the property of these graphs that allows us to find efficiently the K

pairs of anlipodal vertices.

Létf'v be an UPPER vertex of a convex palyhedron. The UPPER transform of V is a
convex polygonal region V' of thé ab plane. By definition of V', any UPPER plane that
passes through vertex V transforms to a point in V' iff it is an UPPER plane of
sdpport. Any LOWILR plane of support that maps to a point in V' is therefore a
parallel plane of support for some UPPER plane of support that passes through V. If

a LOWER vertex W maps to a region W' such that V' and W' overlap, then V and W

share paraliel planes of support and are tlicrefore antipodal.

Figure 5-5: Scarch for plahes of support maps to locating overlapping regions.

We have reduced the problem of computing the diameter of N points in

three-space to the problem of finding intersections of the regions of two outerpianar
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straight-fine graphs. We thus have the following oulline for a three-dimensional

diameter algorithm:
Outline of Three-Binmcnsional Diameter Algorithm

1. Construct the convex hull of the N points.
2. Divide he convex hull inlo the two parts UPPER and LOWER.

3. Map both the UPPER and LOWER parts to outerplanar straight-line
graplis by the transform described above.

4, Find all of the pairs of regions in the UPPER and LOWER graphs that
overlap. Updale the maximum dislance betwecn pairs of antipodal
vertices.

8. Report the maximum distance measured as the diameter.

We can construct the convex hull (Step 1) in O(N log N) time [83] and in O(N)
time partilion the hull into the sets UPPER and LOWER (Step 2) and transform these
sets to outerplanar straight-line graphs (Step 3). Since there are only O(N) pairs of
antipodal vertices, Step 5 requires only constant time. This leaves Step 4, finding
the overlaps between the UPPLR and LOWER outerplanar graphs. We now describe
how to conduct this search in O((N + K) log N) time, where K is the number of pairs

of amtipodal vertices.

Assume lhal there are O(N) faces on Lolh the UPPER and LOWER parts of the
convex hull. The subproblem of Step 4 is thus to find the overlaps among two sets
of O(N) convex regions (with a total of O(N) edges). Two regions overlap iff (1) a
vertex of one region is contained in the other region or (2) an edge of one region
intersecls an edge of anolher region. There exist ;:lgorilhms that solve these two

cases scparately; we anly need to combine them.

We can solve the first case, determing inclusion of the vertices in planar regions,
by a number of algorithms. Lee and Preparata [66] describe how we can locate a

point in the correct region in 0(logzN) time, with only O(N log N) preprocessing time.
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We can thus locate the O(N) points in O(N IogzN) time. Lipton and Tarjan [70] have
improved the query time to O(log N), yielding an O(N log N) time algorithm for the
O(N) points while using only O(N) storage, but the “constant factor" of their
algorithm is very large. Preparata [80] has produced a practical algorithm that
costs only 6 [ log N 1 comparisons for each query but requires O(N log N) storage
and preprocessing time. Since we want to locate a set of points together rather
than just one at a time, however, we can use Preparata’s O(K log K) +
O(N) + O(K log N) time algorithm [82] or Lee and Yang's O((N + K) log(N + K)) time
algorithm [68] for locating a set of K points in a straight-line planar graph of N

vertices, giving us an O(N log N) time algorithm for locating O(N) points.

The second case, finding all K intersections of the edges of the two graphs, can
be solved in O((N + K) log N) time and O(N) storage by Brown's modification [24] of
Bentley and Ottmann's [12] intersection algorithm (which is itself a modification of

Hoey's algorithm for determining if any of N line segments intersect [94, 91]).

The algorithm below finds all of the cdge intersections and all of the vertex
inclusions in O((N + K) log N) time and O(N) storage. It finds the edge intersections
by Brown's algorithim [24] and the regions containing the vertices by maintaining two
order relations (Ry and RL) for the two outerplanar graphs. Suﬁce thc exlra time
required to maintain Ry and R is only O(N log N) and the storage is only O(N), the

_total time and storage bounds are the same as for the edge intersection algorithm.

This algorithm uses several simple data structures and functions:

’
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= Gy and G - two outerplanar straight-iine graphs representing the
transforms of the UPPER and LOWER parts of the canvex hull of the
three-dimensional paints,

- Nextint{i] = next detected intersection point for segment | (that is to
the right of the current x coordinate of the left-to-right scan),

-Q - a queue of (<intersection-point or endpointd, {segmentd>) pairs,
sorted by (he x coordinates of the intersection points (or endpoints),

= Ry [R_] - an order relation of edges from Gy [G] (evaluated at the
current x coordinate of the left-to-right scan),

- R - an order relation of line segments for both G; and G| combined
(evaluated at the current x coordinate of the left-to-right scan),

- Regions[i] = ordered pair (Regions{i].above, Regions{i]l.below) of the

regions above and below edge i in the graph (G or Gy ) of edge i,

= Point[i] = (x;, Y;» Z) of the three-dimensional point corresponding to
region i of Gy or G, '

- Vertices[i] s (three) vertices of the convex hull that determine the
face that maps to vertex i of GU or Gi.

= Insert(P,A,Q) - inserts (P,A) into the queue Q, where P is the left or
right endpoint of segment A or the intersection of segment A and
another segment.

- Delete(P,A,Q) - deletes (P,A) from the queue Q. Exception: If P.x = 00
the request is ignorexdl.

- Insert(S,R) [Delete(S.A)] - inserts [deletes] segment S in [from] order
relation R (where the order is evaluated at the x coordinate of the left
endpoint of S).

= Above(P,R) [Below(P,R)] - returns the segment above [below] point P
in order relation R (where the order is evaluated at P.x),

PAGE 67
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= Insert(S.Ry.R ) [Delete(S,Ry.R )] - inserts [deletes] segment S in
[from] the order relation (Ry or R ) to which S belongs (where the
order is evaluated at the x coordinate of the left endpoint of S),

= Above(P,RyR ) [Below(P,R;R )] - returns the segment above [below]
point P in the order relation (Ry or R) to which P does not belong
(where the order is evaluated at P.x).

- Pairs(L,M,D) - computes the distances between all pairs of points (i,j)
such that i ¢ L and j € M. !f any of these distances are greater than D,
then D is sel to the new maximum.

Algorithm for Scarch Step of Diameter Algorithm

proc Inter(A,B)
! Implement the modified insertion rule of [23] for segments A and B.;
P « Interseclion(A,B);
L « Nextint[A]; M « Nextint[B];
if P.x < L.x then
Delete(L,A,Q); Insert(P,A,Q); Nextint[A] « P;
if P.x < M.x then
Delete(M,B,Q); Insert(P,B,Q); Nextint[B] « P;

! Initialization;
Q « { all pairs (P,i) where P is a left or right endpoint of segment i,
sorted by the x coordinates P.x }
R « Ry « R « ¢; ! order relations for the edges of G and Gs
Nextint{i].x « o for all segments i;

Diam « O;

PAGE 98
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while Q # ¢ do

{P,S) « (next (point,segment) pair on Q); ! X coord of scan becomes P.x;

T « (other seqgment intersecting at P if the next pair on Q is (P,T));

If Pis the left endpoint of segment S then
Insert(S,R);
A « Above(P.R); B « Below(P,R);
If A intersects S then Inter(A,S);
If B intersects S then Inter(8,S);
Pairs(Point[Regions[Above(P,R.R ) ].below], Vertices[P], Diam); ! Three pairs;

Else if P is he right endpoint of segment S then
A « Above(P,R); B « Below(P,R);
Deletle(S,R):
If A intersects B then Inter(A.B);
Pairs(Point[Regions[Above(P,Ry,R )].below], Vertices[P], Diam); ! Three pairs;

Else ! P is an intersection of segments S and T.;
Repoart(P); .
Nextint[S].x « Nextint[T].x « 0;
Reverse(S,T,R); !Let S become the top segment.;
A « Above(P,R); B « Below(P,R);
If Aintersects S then Inter(A,S);
If B intersects T then Inter(B,T);
Pairs(Regions[S], Regions[T], Diam); ! Compare four pairs.;

We have just scen how to find all of the O(K) overlaps of regions of two
outerplanar straight=line graphs of size O(N) in O((N + K) log N) time and O(N)
storage. But, as shown above, this implies

Theorem 31: The diameter of i points in three-space can be computed
in O((N + K) log N) time, wherc K is the number of pairs of antipodal
vertices on the convex hull of the N points.

5.2.3. Retinements, Extensions, Related and Unsolved Problems

We have concentraled only on worst-case two- and three-dimensional algorithms
for computing the Euclidean diameter exactly. In this section we briefly describe
resuits for fast expected-tine, approximation, and higher-dimensional algorithms,

open problems and an application to Chebyshev regression.
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3 1. One of the major open problems for the Euclidean diameter is proving a
! nontrivial lower bound. In Appendix Il we show that a diameter
: algorithm can solve an empty-intersection problem for which an
Q(N log N) time lower hound has been proven for a weak model of
: computation, but there is still no Q(N log N) time lower bound for a
;‘r model of computalion strong enough to construct a convex hull in
: ' O(N log N) time. Shamos [92] conjectures that the diameter problem
has a worst-case lower bound of (N log N) time for any metric whose
circle has a continuously-turning tangent (such as the Euclidean
metric), but that if the circle has only a discretely-turning tangent
(such as the Lq or L, metrics) then we can compute the diameter in
O(N) time.

2. In our two-dimensional diameter algorithm the most expensive step is
the construction of the convex hull of the N points in O(N log N)
worst-case time. A fast expected-time convex hull algorithm leads to
a fast diameter algorithm [81]). For example, if the expected number
of vertices on the convex hull is only O(NP) far some p € 1, then we
may construct the convex hull in O(N) expected-time [16] and
therefore compute the diameter of N points in O(N) expected-time.

Our three-dimensional algorithm, howcver, takes not only O(N log N)
worst-case time to construct the convex hull, but also O((N + K) log N)
time to generate the K pairs of antipodal vertices. If the expected
number of vertices on the convex hull is onty O(NP) for some p < 1 and
the expected number of pairs of antipodal vertices is K, then we may
compute the diameter in O(N + K log N) expected-time. An obvious
open problem is to prove hounds for K, as a function of N for
int'eresliug distribulions of points. {Conjecture: Let the straiaht-line
planar graphs tha* the UPPER and LOWER parts of the convex hull map
to be Gy and G and let the regions of Gy be U; and the regions of G
be L;. Fot any bounded region m of Gy or G let R(m,@) be the aspect
4 ratio of m -- the ratio of height to widlh -- when m is rotated an angle
J @. For any unbounded region m with sides along rays r and s, let
R(m,0) he the aspect ratio for any (rotated) isosceles triangle with its
{ two equal sides on lines r and s. The number of overlapping regions K
is o(s! /2N). where S = max(i,j,8) R(U;.9) / R(Lj.e). This type of bound
arises in the maximum overlap of N rectangular regions [22].)

s A

In D dimensions we can construct the convex hull of N points in O(N)
expecled-lime if the D coordinates of the points are independently
distributed [10] [30]. In this case the expected number of vertices
on the convex hull is only O(logP~1N) [10] and we can then compute
the diameter in only 0(1092(0'1)N) more expected-time by the
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brute~-force method of comparing all pairs of vertices.

3. The best known worst-case three-dimensional Cuclidean diameter
algorithm is that of Yao [102]. which runs in O(N'-8) time. Yao has
also produced a D-dimensional Euclidean diameter algorithm that runs in
o(n2-a(D)y time where «(D) = 2=(0+1),  (This algorithm does not
involve canstruction of a convex hull because a convex hull in four or
more dimensions may have 9(N2) edges ([49], p.193).)

4, Yuval's O(Nlog N) time two-dimensional Chebyshev regression
algorithm [91] rolies on a scan of a convex hull with lines of support.
We may apply our O{(N + K) log N) time algorithm fur locating planes of
support nf a convex polyhedron to obtain an O((N + K) log N) time
three-dimensional Chebyshev regression algorithm.

8. We may appraximate the Euclidean dismeter of a planar set of N points
within a factor of 1 +¢€ in waorst-case time O(N + 1/€) [7] (Section
6.1). (Shamos and Yuval [85] have previously described a technique

that leads to an O(M/(€!'?)) time approximation algorithm.) Bentley,
Faus! and Preparala [7] describe a D-dimensional €-approximate
algotithm that runs in O(N+(1/(~)2(D'1)) time. Open Problem:
Construct a faster D-dimensional €-approximate diameter algorithm or
prove a nonlrivial lower bound for the D-dimensional €-approximate
diameter problem.

§.3. Summary

For both of tlhe problems trealed in this chapter (linear programming and the
Euclidean diameatar of a set of points) we hLave found that an apparently
D-dimensioual problem can be expressed asma D-1-dimensional problem. This is
because each problem can be expressed as a search for a flat (or a pair of flats) in
which only the D - 1 slopes (but rot the intercepl) are important. The transform is
chosen not only to reduce the dimensionality of the problem but also to represent it
im a form for which there are already fast algorithms. The point / flat duality
transforms the search of flats into a search of points and orthographic projection

removes the unneeded coordinate.




AR . o kst AN R0 AR i v S - ORI 15 it M A g e 2

24 December 1G70. Gecometric Transforms

PAGE 102

ol e, .




24 December 1979, Geometric Transforms PAGE 103

6. Misccilancous Problcms and Techaigues

In this chapter we prasent two probicms and solutions that do not fit into any of
the categorics of lhe previous chaplers. The techniques applied to the first
problem (fincding the approximate diameler of a set of planar points) provide a
contrast to the techniques for the exact diameter in the previous chapter because
the emphasis is on quickly producing an approximate convex hull rather than on a
fast search of an exact convex hull. Our solution to the second problem (fitting
points on a hemisphere) introduces a new transform called gnomonic projection that
has the property of mapping great circles on a sphcere to straight lines in the

Euclidean plane,

6.1. Approxiimate Diamater of Poinls in Two Dimensions

We presented an O(N log N) time algorithm for computing the exact Euclidean
diametar of N planar points in Section 5.2. In this section we describe two O(N) time
algorithms for approximaling the Euclidean diameter of N planar points within a
relative factor of (1+€).19 To achieve the faster time we must use radically
differentl techniques. Whercas the exact diameler algorithni used the paint / flat
duality and orthagraphic projection to obtain a problem of locating points within a
tesselation, the first approximation algorithim tses rotation to define a metric whose
unit circle is a regular palygon and the sccond approximation algorithm extends the
ideas of {he first by defining a transform based on a "pie-stice" diagram and use of

the floor function,

6.1.1. First Approximate Diamcter Algoritiun

Shamos and Yuval [95] described how to approximate the Euclidean metric with a
metric whose unil circle is a regular polygon - the distance between two points P
and Q is the width of the smaliest regular K-gon (of a particular orientation) that

contains hoth P and Q. (Figure G-1 illustrates the case for K = 8 sides.) . This

19Th¢ source of this problem is a contest held by ML Shamos at Carnegie-Melion University during Fall 1978.
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approximation has the properly that as the number of sides of the regular polygon
increases the approximation improves. Qur prohlem is to find a function K(€) such

that we can approximale the diameter within a factor of 1 + € by using a regular

AN
S

polygon metric of K(¢) sides.

D

Ee o

Figure 6-1: Points A through H detcrinine the "octagon" metric diameter

Theorcm _8_2_ let DI/\MK be the diamecter of a planar set of points S in a
regular K-gon metric and let DIAM he the Euclidean diameter of S. |If

Kzfn/sec'1(1 +€)]
then

DIAMy < DIAM < (1 + €) DIAN.

Proof: The worst cases are picturcd in Figures 6-2 (a) and (b). In
Figure 6-2 (a) the Euclidean diameter is determined by points P and Q but
the K-gon diameter is determined by points T and U and points V and W,
Letting D(A,B) denote the Euclidean distance between two points A and B,
we define

r=D(TU) =D(V\W) and R =D(P,Q).




G
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Since the metric is based on g reqgular K-gon, the angle ot between lines
Lt and Ly and between lines Ly and Ly is

o = 2n /K.

|
|
|
|

The minimum possible K-gon diameter r is achieved when points T and U
are placed so that line TU is perpendicular to lines Lt and Ly and points V.
and-W are placed so that line V'V is perpendicular to lines Ly and Lw:
From these conditions it foilows that

r = Rcos(ct/2).

Since ¢ = (R-r)/r, we have
K2ln/sect(1+0)1.

In Figure 6-2 (b) the Euclidean diameter is determineg by points P and
Q but the K-gon diameter is determined by points P and 8 and points P
and C. Letting r = D(P,B) = D(P,C) and R = D(P,Q) we have

- 2.2 / -
¢ = Bor yr-stestan(/2)-r | V1 - {(s/r)? + (s/r) tan(et/2) - 1,

r r !

which is maximized at s/r = sin(ac/2), so that
€ <€ cos{e./2) + sin(e¢/2) tan(ce/2) = 1 = sec(et/2) ~ 1.
Since . = 2n / K, we have

K2 n /scc'1(1 +€) 1.
a .

Thearem 33: If K = [ n / sec“(l + €) ], then as € = 0,

K = n/(2¢)2,

Proof: Since cos(x) = 1 - x2/2 +,. ., the rasult follows. O

First Approximate Diamecter Algorithm

1. Let the number of sides of the regular K-gon metric be

Ksln/secl(1+29)])
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(A) ®

Figure 6-2: Worst cases for K-gon diameter.

2. For each of the directions (angles) 0, 2n/K, an/K, 6n/K,
2(K-1)/K find the most extreme of the N points. (This is equivalent
to repeatedly rotating the N points and finding the point farthest to
the right.)

3. Find the (exact) diameter of the (at most) K points determined in Step
2 and multiply it by (1 + €), This can be done in O(K) time by a Graham
[48] scan to construct the convex huli and a Shamos [889] scan to
compute the diameter.

Theorem 34: The Euclidean diameter of a set of N planar points can be
approximated wilhin a factor of (1 + €) in O(N/(€)?) time.

Proof: By Theorem 32 the value chosen for K in the above algorithm is
such.i_c;t for the ¢€-approximation of the diameter. Theorem 33
establishes that K = O(N/(¢)!?). Since the most expensive step of the
algorithm is Step 2, we can compule the €-approximate diameter in O(KN)
= O(N/(¢)'2) time. O
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6.1.2. Sccond Approximate Diametsr Alosrithm

Although the first €-approximate diameter algorithm takes only time linear in N, it
is also linear in 1/¢12, The second ¢-approximate algorithm reduces the time from
O(N/((:)"f) to O(N + 1/¢) by using a transforim based on a “pie-stice" diagram (Figure
6-3) and the floor function. (Bentley, Faust, and Preparata [7] describe a different
€-approximate planar diameler algoritiun that aiso runs in time O(N + 1/¢€).) Bentley,
Weide, and Yao [18] have used a simple "pie-slice® diagram for their Voronoi
diagram algorithm and Weide [99] has used the floor function to speed up some of

the algorithms in his thesis.

L - - .o )

- e e — =
R

Figure 6-3: A "pie-slice" diagram.

The "pie-slice” diagram enables us to find efficiently a small subset $' of the N
points ol 5 such that the diametlar of 3' approximates the diameter of S. The center
of the diagram, where the K "slices" mcet, can be any point on or within the convex

hull of 8. (The slices do nol each cover an angle of 2n/K radians, however,

because the computation of which slice a point lies in would then require inverse
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trigonometric functions. The slices are instead chosen to divide uniformly the slopes
in each of the actants, leading to simpler compulations.) From each of the slices we
choose one point to inserl in the subset S'. As illustrated in Figure 6-3, the point
that we choose is either the farthest lefl, farthest right, highest, or the lowest,
. depending upon the orieatation of the slice. We now determine how large K must be

to ensure that the diametor of 8 is within a factor of (1 + €) of the ciameter of S. !

(A)

Figure 6-4: The two cases for choice of dianmeler with the "pie-slice” algorithm.

Theorem 35: If DIAM is the diameter of a set S of N planar points, then

the diameter DIAMK of the points chosen from a pie-slice diagram of K
slices satisfies

DIAMK £ DIAM £ (1 +¢€) DIAM
if

K281+ /a/201+/T+0 /¢l

Proof: Tigure G6-4 illustrates the two possible worst cases. In both
cases the Euclidean diametler is determined by points P and Q but the
approximation algaorithin chooses points A and B instead. The lines AP and
BQ, however, are parallel for case (A) but perpendicular for case (B). The
dashed lines in both figures outline the possible locations of the center C
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of the pie-slice diagram,

In case 6-4 (A) we have

P = (P, Py) = (A, -,\(Ay-cy). Ay) and
Q = (Q,Q) = (B, -\(B,-C,), B,),
where
A= 8/K
Letting DX = A, - B, and DY = Ay - By.

(1+6€)2 = D(P.0)2 _ (DX - ADY)? + DY2
D(A'B)Z sz + DYZ

Equation (25) is maximized as DY / DX = ®. The worst case for Figure
6-4 (A) is thus :

K =[e/se?] (26)

For case 6-4 (B) we have

P
Q

(P, P} = (AL A, - NA~C)). and

(27)
(Q,, Q) = (B, - \(B,~C,). B).

Although the coordinates of point C cancelled out for case (A), case (B) is
worst when the poinls A, B, and C form an equilateral triangle (Figure
6-5). We now have only to determine the worst orientation for this
triangle. If C is the origin then A and B can be chosen to be two points on
the unit circle centered at C;

A
B

(cos(@), sin(B)), and

(cos(Q+n/3), sin(Q+n/3)). (28)

For line AP ta remain vertical while line BQ remains horizontal (as in Figure
6-4), we require that

n/4 2 @ 2 -n/12. (29)

Combining Equations (27) and (28) we obtain
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(1+6)2 = ARQ . pp g

] D(A.B)? (30)
] F cos?(@) + Gsin3(@) + H sin(@)cos(O),

where

-
"

(4 +6/3\ + 702) / 4,
(4 + 23\ +72) / 4, and
(2\ +/3r2) / 2.

I o
U]

Equation (30) is maximized at
tan(29) = 3-1/2
which is satisfied in the range of Equation (29) at
| 8 = n/2. (31)
Plugging Equation (31) into Equation (30) we have

K=l8y1+/3/2(1+/T+0) /€] (32)

~ Since the value of K for case (A) (Cquation (26)) is only linear in 1/€1/2,
the worst case is case (B), with K defined by Equation (32). O

With a little calculation we have

Theorem 36: If K is defined by Equation (32), then as € = 0,

K= l16y1+372/¢1.
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Figurc 6-5: Worsl case for second approximation algorithm.

Second Approximate Diamecter Algorithm

1. Pick an arhitrary point from the set of N points to serve as the center
of the "pie-slice" diagram. (Actuaily, any point within or on the convex
hull of the N points can serve as the center of the diagram.) For
simplicity of exposition we will assume that the center is the origin.

2. For an €-approximation to the Euclidean diameter, let the number of
regions in the diagram be

K=lay1+f872(1+fT+26) /¢€].
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3. For each of the N points (x;y;) (a) dele.mine which bucket j the point 1
falls in, and (b) compare X (or y;, depending on the bucket j) with the
most extreme value yel found for buckel . We can easily do part (b)
in constant time, but to avoid a binary search of O(log K) steps in part !
(a) we must use the floor function. For the first octant the formula is

BUCKET «L (K/8) (y/x) 1. !

For the other oclants the formuta is similar.

4. Find the exact diameter DIAME' of the K extreme points (plus the
central point of the diagram) determined in Step 3. Using a Graham
[48] scan to construct the convex huil and then a Shamos {91] scan
to find the hull's diameier, we can compute DIAM' in O(K) time. Return

DIAMK = (1 + €) DIAM’

] as the estimated diamcter.

Theorem 37: An approximation DIAMK of the Euclidean diameter of N
'E; planar points thal salislies

DIAM /(1 +¢€) £ DIAMy < (1 +¢)DIAM
. can be computed in O(N + 1/€) time.

Proof: Theorem 35 defines the value of K required to obtain an
¢-approximate diameter from a "pie-slice® diagram and Theorem 36 shows

that this function is O(N + 1/¢). O

6.2. Fitting Points on a Hemisphere

We can somectlimes solve a problem involving points on a sphere similarly to the
corresponding problem involving points in a plane. For example, the spherical
convex hull of N spherical points is similar to a planar convei hull provided that the
N spherical points all lie within a henisphere. If, however, there is no hemispherical

cap that contains all N points, then the (interior of the) spherical convex hull is the

entire sphere. The crucial test (for the spherical convex hull problem) is to

determine if thare exists a hemispherical cap that contains all N points. This

problem is a special case of the problem of determining the densest hemisphere
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determined by N points on a K-dimensicnal sphere. Johnson and Preparata
[56] have shown the densest hemisphiere problem to be NP-complete when N and K
are arbitrary, (For fixed K, however, there is an o(nK-1 log N) time algorithm.) In
this section we will confline ourselves to the (simpicr) problem of determining if N

spherical points can all be fit into a hewmisphericat cap.

There are ihrec O(Nlog N) time algorithms for detcrmining if there exists a
hemisphere that contains a given set of N spherical points. One solution is to
interseat the N half-spaces that contain the sphere and whose boundaries are
tangent to the sphere al the N points, If the resulling polytope is unbounded, then
the N points can be fit into a hemispharical cap. A sccond solution is to construct
the dual of the si)herical Voronoi diagram in O(N log N) time (Section 4.2) and test if
one of the faces of the diagram can contain a hemisphere. But the most interesting
solu_tion uses a transform called a gnomonic projection and is due to Yuval
[105]. Yuval's algorithm uses gnomonic projection to transform a problem that
involves great circles on a sphere to a problem that involves straight lines in the
Euclidean plane. To start simply, we will first solve the two-dimensional case and

then extend our resultl {o threc and four dimensions.

6.2.1. The Two-Dimensional Case

The two-dimensional problem is to determine if there exists a semicircle that
contains a given set of N circular paints, There are two ways in which we can solve
this in O(N) time. One way is to find the largest gap between any two consecutive
poinis of the circle. If this gap is greater than or equal to a semicircle, then all N
points can fit in the other semicircle, Gonzalez [47] describes how to find the
largest gap hetween N unsorted points on a line in O(N) time (by using the floor
function). With a small modification, his algorithm wili find the largest gap on a circle

and thus solve the two-dimeansional problem in O(N) time.

The largest gap  solution  does not, however, extend easily to the
three=dimensional (spherical) problem, whereas the gnomonic projection solution

does. Figure 6-06 illuslrates how the giomonic projection algorithm works. Let C be
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Figure 6-6: Gnomonic projection of points on a circle.

the center of the circle and let L be a line tangent to the circle. The gnomonic
projection trans{orms each circular point P to a point P* on the tangent line L such
that points P, P!, and C are collincar. This transforty is not one~to-one because for
each point P on line L, there are two points on the circle that map to P'. We can
alleviate this ambiguily by diving each of the N projected points on L one of the two
labels "red" or "green”, If a circular paint P is on the top half of the circle, then it
maps to a point P’ labelled red. If pointl P is on {he bottom half of the circle, then it
maps to a point P’ labelled green. We now use gnomonic projaclion to transform our
circuiar problem to a lincar problem that w2 can solve in O(N) time,

Theorem 38: Let S be a set of N points on a circle with center C, L be
a line tangent to that circle, and 8' be the set of N red and green points
obtained by gnomonically projecting S onto line L. There exists a
semicircle that contains all of the points of S iff the red and green points
of set §' are separabie.

Proof: Part (1): Assume thal therc exisls a semicircle T that contains
the points of S. Let the endpoints of semicircie T be called T1 and T2
where T1 is on the top half of the circle and T2 is on the bottom half.
Since T1 and T2 are diamelrically opposite cach olher, they project to
the same point T1' = T2 of line L. We will show that point T1' = T2'
separales the red and green points of Lo Any upper circular point to the
left of point T1 maps to a rcd point that is to the right of T1% Similarly,
any upper circular point to the right of point T1 maps to a red point that is
left of T1'. Dut for lower parls of lhe circle, left and right are not
reversad. A lower circular point to the left of T2 maps to a green point to
the lefl of T2 and a lawer circular point to the right of T2 maps to a green
point to the right of T2’ Since scmicircle T contains all N points of §,
there are only two cases to consider: (1) all uppar points of § are to the
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left aof T1 and all lower points are to the left of T2, or (2) all upper points
are {o the right of T1 and alt lovrer points are to the right of T2. For each
of thasa two canaes it is easy to soe by the above observations that the
point T1' = T2' separates the rad and green points of L,

Part (2): Assume: that the red and graan points of L are separable. Let
poinl T' be any point on L thal scparates the red and green points, There
are two circular points, T1 and T2, that project 1o point T'. To complete
our proof we must show that one of the two semicircles determined by T1
and T2 contains all of the points of S. We omil the delails because they

are very similar to the case analysis desenbed in Part (1) above. O

Theorem 39: Given N points on a circle, we can determine in O(N) time

if there exists a semicircie that contains all N points.

_P_r.c_)_qfi:r By Theorem 38 we cean transform the problem of determining
inclusion in a semicircle to a prablem of delermining separability of red
and grecn points on a line, Since we can determine if the red and green
poitils are scparable by simply comparing the min and max of the red and
grecn points, we can solve the two-dimensional problem in O(N) time. O

6.2.2. The Thiree-Dimensional Case

The gnomonic projection is a principal feature of the O(N log N) time algorithm for

determining it N spherical points lie on a hemisphericai cap. The definition of the
b gnomonic projection in three dimensions is a straightforward extension of the
transform in two dimensions:

Let P be a poinl on a sphere with center C and let plane L be tangent
to the sphere. The gnomonic projection of spherical point P onto plane L
4 is the poinl P! such that points P, P', and C are collinear.

This transform maps great circles on a sphcre to straight lines on a plane, allowing
us 1o use known algorithms for lincar objects in the Euclidean plane to solve our

spherical problem,

We assiqn the dabels red and grenn to the projections on plane L as in the
two-dimensional case, I lina scgment PP contains point C, then we label P! red.
Otherwise we label P green. We now usa gnonionic projection to transform our

threz=dimensional problem o a two-dimcnsional problem that we can solve in
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Figurc G-7: Gnomonic projcction of points on a sphere.

O(N log N) time.
Thearem 40: [ et S be a set of N paints on a sphere with center C, L be
a plane that is tangent to the sphere, and 8 be the set of red and green
points obtained by gnomonically projceting § onto L. There exists a
hemispherical cap that contains alt of e points of S iff the scts of red
and grecn points of 8 are separable by a line,

Proofl: The delails are analogous lo the proof for the two-dimensional
case. Simply replace circle by sphere, semicircle by hemisphere, ete. O

i

Figure 6-8: Cxample of nonseparabie sets of red and green points.
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We have just reducead the problem of determining if a set of spherical points lie in
a hewmisphere to the problem of dotermining if two planar sets of points are
separable by a slraight line.  Shamos and Hoey [94] present an O(N log N) time
solution to the planar separability problen, They first make the observation that two
planar sels of points are separable by a line il the convox hulls of the two sets are
separable by a line. The convex hulls arc separable iff their inlersection is empty.
(Sce Figure 6-3 for an example of nonseparable scts of points.) Since we can
construct the two convex hulis in O(N log N) time ([48]) and then intersect them in
O(N) more time ([04]). we can detarmine separabilily of two planar sets of O(N)
points in O(N log N) time, Since the gnemonic projection of N spherical points to N
planar points costs only O(N) time, we have

Theorem 41: Given a set § of N spherical points, we can determine in

O(N loq N) time whether or not all N points of S can be fit into a
hemispherical cap.

6.2.3. The Four-Dimc: sionval Case

If S is a sct of N points an a four-dinensional hypersphere, then in O(N log N) time
we can dctermine if the N points of § can be enclosed in a four-dimensional
hemispherical  cap. The algorithm is analogous to the algorithm for the
three-dimensional case. We map the H spherical points to N red and green points in
Euclidean three-space by a (four-dimensional) gnomonic projection.  The N
hypersphaerical points fit on a hemi-hyperspihere iff the red and green points are
separable by a plana. We can determine separability of the red and green points in
O(N log N) time. The first step is to construct the convex hulls of the red and green
points in O(Nlog N) time ([&3]), and then intersect the two convex hulls in
O(N log N) time. We can construct the intersection by the algarithm of Muller and
Preparata [73] or by any O{NlogN) time aigorithm for intersecting
(three-dimansional) half-spaces. It the intersection of the two convex hulls is
empty, then the N hyperspherical points of 8 can be enclosed by a

hemi-hyperapherical cap.
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6.3. Summary

This chapter presents {wo dissimiior scls of problems and techniques. For the
approximate Fuclidean diamater of a planar set of points we have been interested in
a fast approximale convex bhull algorithi, One approach is to successively use
rotation to approximale the Nuclidean matrig, oblaining an O{N/{c!/2)) time algorithm.
A faster algorillun can be oblained by a partitioning approach; in this case we used
wedge-shapad "pie-slices” or "huckets," yiclding an O(N + 1/¢) time algorithm. This
algorilhm avoids an exlra faclor of O(lug 1/€¢} by using the floor function to drop

points into the appropriate “slice."

To determine if there exists a hemisphiere that contains all N of a given set of
spherical points we found it useful to apply a gnomonic projection. This is because
a hemisphere is bounded by a great circle and the ghomonic projection maps great
circles on a sphere to lines in the Euclidaan planeg. This enables us to use a fast
planar algorithm (separabilily of planar sels of paints) to solve the spherical problem
in O(N log N) time. Similarly, N points on a {our-dimensional sphere can be mapped to
Euclidean threc-space to oblain a problem (separability of two three-dimensional

sets of points), which we can solve in O(N log N) time.

i
i
!
i
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7. Conclusion

7.1. Trans{orms and Technicues

This thesis presents a new echnigue for construction of fast geometric
algorithing == the use of geomelric transforms,  Although many different kinds of
transforms are presented, most {all inta one of two classes

1. transforms lo converl probiams that are expressed in terms of circles

or spheres (o problems that are expressad in lerms of lines or planes,
and

2. transfarms o convert problems that are expressed in terms of flats to
problems that are expresscd in terms of points.
Transforms in the firat class map points to points and transforms ih the second class
are duality transforms. In Appendix I we list the transforms used in this thesis,
their important properties, and some of their applications. In addition, Table 7-1

summarizes “typical uses” for four of the transforms that have been particularly

useful.
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Projection (orthographic or "radial")

Salve a K-dimensional problem as a (K-1)-dimensional problem.
(Reducing dimensionality typically simptifies a problem.)

Embedding Saolve a K-dimensiona problem as a (K+1)-dimensional problem.

{The extra degrec of freedom can sometimes allow an
interpretation of the problem which is not possible in K-space.)

Point / Mat Duality  Salve a problem invelving flats as a problem involving points. If

half-spacas  (rather than flats) are involved, then the
half-spaces natarally partition into two sets (UPPER and
LOWER) since cach flat daeterpines two haif-spaces.

Inversion (Stereaqraphic 'rojection)

Converts problems involving circles (spheres) to problems
involving lines (planes). Since circles (sphieres) are intimately
related to the Euclidean metric, inversion may be useful in
problems involving the Euclidean distance between points.

Table 7-1: Heuristics for use of some transforms.

- 7.2. New Resuils

In the preccding chaplers we have prescnted scveral examples of the use of

geometric transforms, Some of the major resulls are:

- We relatn the FEuclidean Voronoi diagram of a set of points to the
convex hull of a transformed set of points, yiclding an O(N log N) time
planar algorithm, which is optimal to within a canstant factor,

We transform the problam of finding planes of support of a convex
polyhedron to the problem of finding all averlapping regions among two
straight-line planar graphs. This gives an O{(N + K) log N) time and O(N)
storage algorithm for compuling U Euclidean diameter of a set of N
points in three-space, where K is the number of pairs of antipodal
vertices of the convex huil of the N points,

- We relate the intersection of UPPER half-spaces to the convex hult of
a finile set of points. This lecads to an O(N log N) time algorithm for
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conslructing  the interscetivn of N UPPER  three-dimensional
hall-spaces, which is optlimal to within & conslant factor.20 we apply
the floor function to obtain an O(N + 1/¢) time algorithn for
approximating the diameler of N planar points 1o within a factor of
1 + €. (This and Bentley, Faust, and Preparata’s [7] O(N + 1/€) time
planar algorithim are the best known algorithms for approximating the
Cuclidean diameicr.)

- We transform the union of N planar disks to an intersection of N
threc-dimensional half-spaces, yickling an O(N log N) time algorithm for
conslructing the union of N planar disks.

- There are alaso a number of minar but new results:

* Location of an arbitrary point in a sct of N planar disks in
O(log N) time with only O(M log N) preprocessing time and O(N)
storage (Section 3.2.5).

% O(N log N) time algorithms for consiructing closest and farthest
point Voronoi diagrams for N spherical points and for the sides of
a convex N-gon (Seclions 4.2 and 4.3).

* Determining " in O(N log N) time whether N points on a

four-dimensional sphere can be fit in a hemisphere (Section
6.2.3).

7.3. Open Problems

There are still several problems thot remain unsotved. The list below describes

several of the major outstanding probilems,

- One of the major unsolved prablems of this thesis is to prove an
Q(N log N) time lower bound for computing the Euclidean diameter of N
planar poinls under a model of computation strong enough to compute it
in O(N log N) lime. (Appendix Il describes an approach toward such a
proof.) Shamos [072] conjectures that for any metric with a
continuously-turning tangent the worst-case lower bound is Q(N log N)
time.

ZoThis rezult, althaugh similar to the wark of Prerarata and Maller {847, was doae independently.
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- What is the expaclad number of pairs of antipodal vertices among N
three-dimensional points (under any interesting distribution of points)?
(This  determines the expectad-time  of the Euclidean diameter
algarithim of Section 6.2.)

= For an approximate diamaler we and Donticy, Faust, and Preparata
[7] have shown an O(N + 1/€) time: upper bound, but the lower bound
remains an open question,

- The "bucket transform" of Weide's O(N) expected-time sort [99] has
already heen extended to O(N) expected-lime planar Voronoi diagrams
by Bentley, Weide, and Yao [18]. The power of {his transform derives
from the use of the floor funclivi,  Most algorithms and picofs for
lower bounds use models of computation thal involve only comparisons
belween analytic funclions of tha inpul, bul these resulls are
becoming dated as the floor functlion is applicd to more problems.
Some olhier notable uses of the floor funclion are the lincar-time
largest  gap alqorithm  of  Goncalez  [47] lincar  expected-time
closesl-point  algorithms  of  Yuval [104] and Rabin [86], and
O(N log log N) worsl-casc time closest-peir algorithm of Fortune and
Hopcroft [41]. These algorithms partition their problem into "buckets"
and use the floor funclion to compute quickly for each point the bucket
into which it should be dropped. What other uses can we find for the
{loor funclion in geomelric algorithmg?

- The algorithms for interseclion of half-spaces, planar Euclidean Voronoi
diagrams, spherical Varonoi diagrams, and diamaeter of a set of points
all use the convex hall of a sct of points. (Mso, the algorithms that
involve an inlersection of haif-spaces indircetly use convex hulls of
sets of points.) Shamos [91] describes how a convex hull is used in
isotonic regression and Silverman and Titterington [96] use a convex
hull to find the smallest covering cllipse of a planar set of points.
What other uses can be found for convex hulis?

7.4, Conclusion

Transforms arc often usclul for converling apparcently difficult problems to
instances of problems that are solvable by well-known methods. !'n this thesis we
have prescented a set of techniquas for applying anometric transforms to geometric

problems thal provides another sel of leols for Lhe designer of fast geometric
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algorithims.  Turthenwore, in the pracess ol dllustrating the application of these
transforms to saveral problems, we have obiained several useful and interesting

algorithins.
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Appcadix |
Findinc 2 Good Oricriation for Flats

-4
One of the major problems with resresenting lines, planes, or, in general, flats in
slope-intercept form is that vertical {luls cannot he represented and near-vertical
flats causc large round-off error. If vertical and near-vertical flats can be avoided,
however, the slope-intercept form is very convenicnt because of the properties of
the transform

K-1

Xk = Z‘: ax, + ag = (apas...a)
=

as described in Scation 3.1. i this cppendix we describe how rotation of the flats

can help avoid the occurrence of vertical or near-vertical {lats.

There are two cases to consider:

(1) The restricted case: If the retation is being performed to enable an
interseation of N UPPER half-spaces (as in Section 3.1), then we must
ensure that after rotation all N half-spaces remain UPPER half-spaces
(rather than LOWER half-spaces).

(2) The general case: In general there is no restriction as in Case (1).

1.1. Case (1)

Since we want to detlermine what angles to rotate the flats through, it will be
useful first to represent the flats by their angles rather than slopes. Specifically,

we map the slope-intercept representation to an angle-of~inclination representation

by

K-1

x, = ‘21 tan(Q)x, + agy = (04,0, .. 0k.)

where 9,‘ ¢[-n/2,n/2),j=1,...,K-1, In the following discussion a K-dimensional
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problem of flats will therefore be treated as a K-1-dimensional problem of points. A
flat will be called near-vertical if one of the K - 1 corresponding angles @; is within
a given small angle € of being vertical (n/2 or -n/2). We will also use the notation
;) for the jth coordinate (angle) for the ith flat.
We want to find a rotation (g1, g2, - . . ¢g-4) such that
“-n/2+€ £ "j*oij € nf2-¢, fori=1,,.., N, j=1,...,K-1, {33)
We can easily find such a rotation, if it exists, in O(KN) time and storage. First
compute the maximum and minimum angles for all K - 1 coordinates
_ max . _ min - -
max, = i eij and min, = i 9.-,-- forj=1,...,K=1,
In O(KN) time and then determine if
ln-(maxj-minj)l 2 2¢ forj=1,...,Ke-1. (34)
If Condition (34) is satisfied then a rotation satisfying Condition (33) exists. One
such rotation (¢1, T2 -0 ’K“l) is
oj = - (maxj + mini) 12, j=1,..4K=1.
it may not be necessary Lo do any rotation at all; if
E lnIZ-maxj[?.G anci [n12+minjl2€ forj=1,...,K-1 (35)
then no rotalion is required. The probability that Condition (35) is satisfied depends
4 on the probability distribution of the points (G;1. 0i2) - + » ©jk-1)- If the density of
the distributlion is unilorm {(and all points are independent) then Condition (35) will be ;
satisfied with probability
. i -2¢ N(K‘1)
P( No rotation rcquircd ) = (152—) .
Condilion (34) (existence of a rotation satisfying Condition (33)) is satisfied with
r probability
P(rotation for Case (1) cxists) = P(max‘--minj S$Rr-26¢),j=1,...K-1 "
s P(max,-mini £ n-26)R-1

B, b e s it el ST iidadion i it
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wnhere
P{max,-min, £ n-2¢) = S.? 2 o X% Ndx dx |
! ! . %230 jx1=max(0..v3-t¢2‘) dx,dx, n 1772
- (n-ze)N . 26N m-2¢ P-'-1'
n n Tt
.2. Case (2)

If we allow arbitrary rotalions then the K-1-dimensional points (91,92. .o 9K-1)
may "wrap around" the boundarics of the cube of angles [-n/2,n/2)"°‘. Whereas
the analysis of Case (1) required only computations related to the max’s and min's
for each of the K - 1 coordinates (indzpendently), the analysis of Case (2) involves

the “larges't great-circle-shaped gap* between N points on a K-dimensional sphere.

The mapping that we use is (almost) the peint / flat duality of Zolnowsky [106]. A
flat is first translated so that it is tangent to the unit sphere (centered at the
“origin) and the transform is the point of tangenc'y. Since there are two |
(diametrically opposite) points at which a fiat of a given orientation can be tangent,
there are two possibie points to which a flat can map.21 We can, of course,
describe lhis transform in carlestan coordinales, but when we wish to speak of the

angles of inclination it will be more usctul to use the mapping

K-1

Xg = 2, = cot@)x, + a8 > (8,85 +. 0y (36)
=1

where the points (91,92.....9,(-1) are interpreted to be normai geodesic

coordinates of a K-1-dimensional sphere. (Each K-1-tuple represents two

21Wo can also erpress the transform as the point / flat duahity ot Scetion 3.1 followed by orthographic
projection o the plancs ¥y 3 &1, reversing the aign af ail coardinates, and then gnomonic projection to the surface
of tho sphere.

O 1 i A S
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diametrically opposite points on a sphere.) In each coordinate system this transform
g. maps each flat to a paint on the unit sphere such that the vertical flats map to

' paints on the areat circle G;j=#/2, i=1,...,, K-1 (or, in cartesian coordinates,
where the sphere intersects the flat XK = 0). The near-vertical flats map to points

near this greal circle. We will present an analysis for two and three dimensions.

|
i
|
1.2.1. Case (2) for Lines in a Plane i

Lines in the plane transform by Equation (36) to pnints on the top half of the

e e e

circle x2 + y?- = 1 and their diametrical opposites on the hottom half. A line L is
f vertical iff it maps to the points (x,y) ={1,0) (8 = 0) and (x,y) =(-1,0) @ =4. L is
near-vertical iff it maps to points within an angle € of (1,0) and (-1,0). There exists
a rotation of a set of lines S such thatl none are near-vertical iff there exists a
rotation of their corresponding points S' on the circle such that none are within an
angle € or (1,0) or (-1,0). This occurs iff there cxists a rotation of the points (1,0)
and (-1,0) such that they are not within an angle € of any of the N points of S,
.which occurs iff there exists a gap of al lcast 2¢ betvreen adjacent points of S* on

the circle. We can determine this in O(N) time by (a modification of) Gonzalez's

largest gap algorithin [47]. (It should be noted, however, that Gonzalez's algorithm
uses the floor function. If only analytic functions are used, then the best known

algorithm for the largest gap problem takes O(N log N) time.)

1.2.2. Casc (2) for Planes in Three-Space

Planes in three-space transform by Equation (36) to points on the top half of the

l sphere x? + y?- + 2% = 1 and their diametrical opposites on the hottom half. Vertical
planes map to points on the great circle 0q =0p = /2 (where the sphere

intersects the plane 7 = 0) and near-vertical planes lie within an angle € of this

great circle. There exisls a rotalion for a set of plancs S such that no plane is
near-vertical iff there exists a rotation for this great circle such that no point is
within an angle € of any of the points of S'. Whereas in two dimensions we obtained

a problem that involved the (anqular) distance between pairs of points on a circle, in

¢

— S e
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three dimensions we have a problem that involves the (angular) distance between

points and a grcat circlc on a sphere.

Searching for a yreat circle thal salislies our conditions seems more difficult than
searching for a paint bhecause a great circle is a nonlocal object. We can, however,
apply a poinl / gareal circle dualily o obtain an equivalent peoint-searching problem.
The transform is simple;

spherical point = great circle farthest from the point, and
great circle = the lwo points farthest from the great circle.

Since this duality praserves the angular distance between a point and a great
circle, a spherical point P and a great circle € are an angular distance of € apart iff
their transforms are € apart. Our new problem is thus

Given N great circles on a sphere, find a point on the sphere that is not
within an angle € of any of the great circles.

This problem can be solved by the spherical analog of a planar nearest line Voronoi
diagram, Unfortunately, since the N great circles partition the sphere into e(NZ)
regions this approach will take at least Q(NZ) time. In the worst case, it can take
longer to find a good orientation for a sct of N planes than it takes to intersect N
three-dimensional half-spaces. [f € is small compared to N, however, we might be

able to find a good orientation in O(N) expected-tine.

i
i
!
3
'
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; Appendix i
Relation of Diameter to Emply Intersection

In this appendix we describe a relationship betwecn the Euclidean diameter and
an emply intersection problem that may lead to an Q(N log N) time lower bound for
the diameter problem. The empty intersection probiem that we are interested in is a
variation of the problem of Reingold [87]:

Given two sets, P and Q, each of N reals in the interval [0,1),
determine if there exist p € P and ¢ € QG such thatp = q.

We convert the emply interscction problem into a diameter problem by using
inversion (Section 3.2.3). The inversion transform is determined by two parameters,
the center of inversion and the radius of inversion. ‘We shall choose the origin as

the center of inversion and let the radius of inversion be one. The transform is thus

(xy) - ( X y )

’
eyl xley?

For our purposes the only important property of this transform is that it transforms a

line that does nol pass through the origin into a circle that does pass through the

origin. In particular, the line y = 1 maps to a circle with radius 1/2 centered at the

point (0,1/2).

1
F— P

Figure 7-1: Mapping the points of sets P and Q to a circle.

w1

100
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Our construction first maps the N elements of set P to poiits on the line y = 1 and
then applics inversion 1o map those points to points on the circle

x2 + (y - 1/2)2 = (1/2)%:

P 1

1+ p*

{1+ p*

), peEP,

Note that since the elements of P are chosen from the set [0,1), all of the N points
generated from P will lie within an arc of only one quarter of the circumference of
the circle. (See Figure 7-1.) Our transform for the clements of set Q, on the other
hand, generates points on a quarter-circle arc that is diametrically opposite the
points from sct P. More preciscly, since vie want to convert the empty intersection
problem to a diameter problem we choose the transform for the elements of set Q so
that identical eclements of sets P and Q will be diametrically opposite on the circle.

The transform for set Q is thus

q = (-q,0) = ( ., q? ) q€Q.
1+¢% 1+¢°
Since all of the elements of seta P and Q are {ransformed to points on a circle, the
maximum possible diameter of the 2N points is the diamecter of the circle. This
maximum is achinved iff two of the 2N points are diametrically opposite, which
occurs if{ there exists a p € P and g € Q such that p = ¢. We have just proved

Theorem 42: Given a mode!l of camputation strong enough to support
the inversion tranaform, we can transforin an instance of the empty
intersection problem into an N-point diameter probiem in O(N) time.

To apply our lower hound for the empty intarsection problem to the diameter
problem, we must prove the lower hound under a model of computation strong enough
to support our construction for solving the empty intersection problem as a diameter
problem. Reingoid’s Q(N log N} lower bound unfortinately allows only comparisons
with linear functions of the input, which is not strong cnough for our purposes. One

model of computation that is strong enough is a deeision tree {hat allows only

g
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comparisons between multivariate polynomials of degree at most K (for some fixed K
2 4) at internal nodes. It is important that the degree be bounded because
otherwise we could solve the empty intersectlion problem in constant time by making

the comparisons

N N
n (p,-q) £ 0 and H (p,-q) 2 0.
ivj i

Comparisons belween bounded degree polynomial functions are suffliciently strong
that we can support our construction for solving empty intersection as a diameter

probltz:m.22

(Furthermore, vie can construct O(N log N) time diameter algorithms
under this model of computation.) It remains an open problem whether or not we can
prove an Q(Nlog N) tima lower bound for the emply intersection problem under this

model of computation,

22!! may at first appear that we cannct compute the inversien transform of our construction with finite degree
polynomial functions besauze it involves division,  That iz, i a strict sense, true, but wo can simuiate it by
representing a guotient p/q as an ordered pae (p,q).

L R R . " - -
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Apnendix il
Geormetric Trensiorms and Aonlications
In this nppnndii we summarize the transforms used in this thesis (or used for
geometric problems not described in this thesis) and list properties of and

applications for each. The transforms are collected into three categories:

Point-to-Point Transforms, Duality Transforms, and Miscellaneous Transforms.

i11.1. Point-to-Point Transforms

Most of the point-to-point transforms fall into one of two classes; continuous
and invertible transforms and projections.  All continuous and invertible
transforms [ arc potentially applicable to uhion or intersection problems

because they satisfy

[((AVB)=1((A)v(B) and ((ANB)=((A)N 1(B).
Rotation
Prescrves size and shape while altering orientation.

- Convert L, diameter to Lq diameter in the Euclidean plane (Section
2.6).

General linear transform
Maps linear quantities to linear quantitics while stretching and rotating.

- Generalizes problems wilh reclilincarly oriented lines or line segments
to problems wilh lines or line segments at two arbitrary angles
(15, 12].

- One-dimensional Johngson-Mchi crystal growih model [AG] transforms to
two-dimensional maxima of vectors.

- Derivation of point / flal duality from inversion and a linear transform
(Section 3.3).

Orthographic projection




o D 1 M 1 o R et b T el

24 December 10970, Ceometric Trans{orms PAGE 136
Reduces dimensionalily by climinating onc of the cartesian coordinates and
leaving the others unaffected,
= Searching a Voronoi diagram {89, 33, 31].

= Multi-diniensional divide-and-conquer algorithms that solve the merge
step of a K-dimengional problem as a K-1-dimensional problem [3].

- Nearest (farthest) side diagram of a convex polygon (Section 4.3).
= Buclidean diameler of N points in three-space in O((N + K) log N) time,

where K is the number of pairs of antipodal vertices on the convex hull
(Seclion 5.2).

= Three-dimensional Chebyshev regression (Section 5.2.3).

B - Least-squares isotonic regression [81].

>

! - Least squares regression.

Perspective transformation

i

Lines map (o linns and plancs map lo planas while preserving perspective

information. Maps K~dimensional 1ays to K~1-dimensional line segments.

- Transforms a perspactive projoction  (visibility) problem to an
orthographic projaction problem [87].

Radial projection (about a paint)
Preserves spherical angle while recducing dimensionality.
- Dual of spherical Voronoi diagram (from convex hull) (Section 4.2).

- Spherical Voronoi diagram (from intcrsection of half-spaces) [22].

Gnomonic projection

A two-to~onc transform thal maps great circles on a sphere to lines in the

N R 3 e gt
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'\

= Determine il N spherical points can fit in a hemispherical cap [106]
(Section 6.2).

A conformal mapping, but il rcdu_Cx.-s the sense of the angle.

- This is a special case of inversion in three-space. (See inversion.)
Inversion

! . i

Inversion is a circular transform; \circlcs map to circles (where a line is ;

considcred to be a circle of infinite radius). In particular.

= A circle that passes thiough the center of inversion maps to a
line that docs not pass through the center of inversion.

=The interior of a circle that contains the center of inversion
maps lo the coxtcrior of a circle that contains the center of
inversion.
= Other propertins are described in [3G].
- Union, interseclion, subtraction of disks (Saction 3.2).
- Nearest (farthest) point Voronoi diagram (Section 4.1) [23].

- Nearest (farthest) edge diagramn (Section 4.3).

- Derivalion of point / flat duality from inversion and linear transform
(Seclion 3.3).

= Mapping of points on a line (o points on a circle in Appendix il.

"Bucket" transform (floor function)

A discontinuous function but availalile as a primitive on most machines. Uscful
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‘i = O(N) expected-time sort [09].

1}

= O(N) expectad-time convex hull, Vororoi diagram [18].

= O(N + 1/¢) time C-approximation for Euclidean diameter of points
(Section 6.1) [7].

Embedding into a higher dimension

Adds a degree of frecdom to the problem,  Lines can Lecome planes, circles
can become spherces, clc.

- Union, intersection, subtraclion of disks (Section 3.2).

- Nearest (farthest) point Euclidean Voronoi diagram (Section 4.1).

- Nearest (farthest) side diagram of a convex polygon (Section 4.3).

- Lower bounds for union (intersection) of disks or half-planes (Section
3.2) or convex hult of points or trangulation of a set of points

[91]. (Sort N recals by mapping them to N planar points, N disks, or N
3 half-plancs.)

<
i
i
K

- (N log M) time algorithm for least-squares isotonic regression [01].

.2, Duality Trans{orms

Userful Tor tansforming proldems involving nonlocal objects (such as flats) to

problems involving points,
N Points in 1 Space / 1 Point in N Space Duality
Transforms an N point problcm into a one point problem.

- Element-uniqueness lower bound [34].

- Epsilon-closeness lower hound [42].

= Lower bounds for sorting, insartion, finding max with analytic functions
g Y
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[43].
Zolnowsky's plane / point on unit sphere duality
= O(N log N) time intersection of M hatl-spaces [106].
= Finding a g.oml orientation for flals {Case (2) of Appendix 1.)
Plane / Homogencous Pluckcerian coordinate duality
A more homogencous representation of the point / flat duality below.
- O(N log N) time intersection of M haif-spaces [84]. |

Slope Intercept form of Point / Flat duality

Prescrves xy coordinate distance betiveen a point and a flat, thereby
prescrving incidence betwveen points and flats. Preserves above/belowness

between points and flats.

- O(N log N) time inlersection of N UPPER (or N LOWER) half-spaces
(Sectlion 3.1).

* Closest (farthest) side of a convex polygon (Section 4.3).

# N poinls on a hemisphete: inlerscection of half-spaces solution
(Scction 6.2).

- Linear programming [28].
- Impossible three-dimensional scenes (53]

- Diameter of N points in threce-space in O((N + K) log N) time (Section
5.2).

- Least-squares isotonic regression [91]),

- Three-dimensional Chebyshev regrossion (Section 5.2.3).
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- Faur two-~dimensianal line problems: eenter of lines, intersection radius
of lines, mimmal spanning segnent of lines, diameter of lines [21].

= Number of exterior points in interseclion of N lines is linear [21].
Genemlized (Slope-intercept) Duality Transform

- Interseaction of Half-K-Spaces (Section 3.1.5).
Circle / Paint Duality

= Relation between inversion, Point / Tlat duality, and convex hulls
(Section 3.3).

Spherical Paint (Pair) / Great Circle Duality
Preserves spherical angle hetiveen a point end a great circle.
= O(N log N) time algorithm for spherical farthest line Voronoi diagram

[22].

1.3, Miscellancous Transtoiins

Point to locus of a set of points transforms

- Digitization prablem. Given N digitized points, find the set of all lines
that have that digitization [22].

- Inclusion of N points on a hemisphere -- intersection of half-spaces
solution: each point transforms to the set of points from which it is
visible (in this case a half-space). (See Section 4.2.)

- Transform polyhedral obstacles to locus of forbidden positions of a
reference point of the moving object [71].
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Polygon to string transform

~ O(N) time algorithm for similarity of polygons [72].

PAGE 141
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